Thermal properties of Sn-based solder alloys

  • Carina Morando
  • Osvaldo Fornaro
  • Olga Garbellini
  • Hugo Palacio


During last few decades, emerging environmental regulations worldwide, more notably in Europe and Japan, have targeted the elimination of Pb usage in electronic assemblies due to the inherent toxicity of this element. This situation drives to the replacement of the Sn–Pb solder alloy of eutectic composition commonly used as joining material to suitable lead-free solders for microelectronic assembly. Sn-based alloys containing Ag, Cu, Bi, and Zn are potential lead-free solders, usually close to the binary or ternary eutectic composition. For this reason a great effort was directed to establish reliable thermophysical data fundamental to interpret the solidification process and fluidity of alloys belonging to these systems. In this work, an analysis of the solidification process of pure Sn, binary Sn–Ag, Sn–Cu, Sn–Bi, Sn–Zn, Sn–Pb and ternary Sn–Ag–Cu eutectic alloys was carried out using computer aided-cooling curve analysis and differential scanning calorimetry.


Latent Heat Solder Alloy Lead Free Solder Eutectic Alloy Ternary Eutectic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was carried out at CIFICEN (Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires, CONICET-UNCPBA) and IFIMAT (Instituto de Física de Materiales Tandil, UNCPBA-CICPBA-MT) and has been partially supported by ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917 (C1033AAJ) Buenos Aires, Argentina), SeCAT-UNCPBA (Secretaría de Ciencia, Arte y Tecnología de la Universidad Nacional del Centro de la Provincia de Buenos Aires) and CICPBA (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Av 526 e/10 y 11 (B1906APP) La Plata, Argentina). CM and OF belong to CONICET, and OG and HP belong to CICPBA.


  1. 1.
    M.M. Schwartz, S. Aircraft. Welding, Brazing, and Soldering, volume 6 of ASM Metals Handbook. ASM Intl., pp. 126–129 (1993)Google Scholar
  2. 2.
    R. Wassink, Soldering in Electronics, 2nd edn. (Electrochemical Publications Ltd, Ayr, 1989)Google Scholar
  3. 3.
    R. Strauss, Surface Mount Technology (Butterworth-Heinemann, Oxford, UK, 1994)Google Scholar
  4. 4.
    Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment. European Parliament and the Council of 27 January 2003 (OJ L 37, 13.2.2003, p. 19)Google Scholar
  5. 5.
    Directive 2002/96/EC on waste electrical and electronic equipment. European Parliament and the Council of 27 January 2003 (OJ L 37, 13.2.2003, p. 24)Google Scholar
  6. 6.
    P. Lauro, S. Kang, W. Choi, D.-Y. Shih, J. Electron. Mater. 32, 1432–1440 (2003)CrossRefGoogle Scholar
  7. 7.
    S.-H. Huh, K.-S. Kim, K. Suganuma, Mater. Trans. JIM 42, 739–744 (2001)CrossRefGoogle Scholar
  8. 8.
    U. Kattner, JOM 54, 45–51 (2002)CrossRefGoogle Scholar
  9. 9.
    Z. Moser, W. Gcsior, J. Pstrus, S. Ishihara, X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Mater. Trans. JIM 45, 652–660 (2004)CrossRefGoogle Scholar
  10. 10.
    N. Moelans, K.H. Kumar, P. Wollants, J. Alloys. Comp. 360, 98–106 (2003)CrossRefGoogle Scholar
  11. 11.
    S.W. Yoon, J.R. Soh, H.M. Lee, B.-J. Lee, Acta Mater. 45, 951–960 (1997)CrossRefGoogle Scholar
  12. 12.
    T. Siewert, S. Liu, D.R. Smith, J.C. Madeni, Properties of lead-free solders, release 4.0. Technical report, (NIST and Colorado School of Mines, Colorado, 2002)Google Scholar
  13. 13.
    European Cooperation in Science and Technology. COST 531 database (2007)Google Scholar
  14. 14.
    European Cooperation in Science and Technology. COST Action MP0602 “Advanced Solder Materials for High Temperature Application (HISOLD)” (2011)Google Scholar
  15. 15.
    National Physical Laboratory, UK. NPL Lead Free Solder DatabaseGoogle Scholar
  16. 16.
    D. Stefanescu, G. Upadhya, D. Bandyopadhyay, Methods Mater. Trans. A 21, 997–1005 (1990)CrossRefGoogle Scholar
  17. 17.
    I.G. Chen, D.M. Stefanescu, AFS Trans. 92, 947–965 (1984)Google Scholar
  18. 18.
    K.G. Upadhya, D.M. Stefanescu, K. Lieu, D.P. Yeager, AFS Trans. 97, 61–66 (1989)Google Scholar
  19. 19.
    C.H. Su, H.L. Tsai, AFS Trans. 99, 781–789 (1991)Google Scholar
  20. 20.
    J.H. Chen, H.L. Tsai, AFS Trans. 98, 539–546 (1990)Google Scholar
  21. 21.
    S.H. Jong, W.S. Hwang, AFS Trans. 100, 939–946 (1992)Google Scholar
  22. 22.
    Y.-F. Chen, S.-H. Jong, W.-S. Hwang, Mat. Sci. Technol. 12, 539–544 (1996)CrossRefGoogle Scholar
  23. 23.
    J.O. Barlow, D.M. Stefanescu, AFS Trans. 105, 349–354 (1997)Google Scholar
  24. 24.
    D. Emadi, L.V. Whiting, S. Nafisi, R. Ghomashchi, J. Thermal Anal. Calorim. 81, 235–242 (2005)CrossRefGoogle Scholar
  25. 25.
    S. Thompson, S.L. Cockcroft, M.A. Wells, Mater. Sci. Technol. 20, 194–200 (2004)CrossRefGoogle Scholar
  26. 26.
    O.B. Garbellini, H.A. Palacio, H. Biloni, Cast Metals 3, 82–9 (1990)Google Scholar
  27. 27.
    J. Campbell, Cast Metals 4, 101–2 (1991)Google Scholar
  28. 28.
    K. Ravi, R. Pillai, K. Amaranathan, B. Pai, M. Chakraborty, J. Alloys. Comp. 456, 201–10 (2008)CrossRefGoogle Scholar
  29. 29.
    O. Fornaro, H.A. Palacio, J. Mater. Sci. 44, 4342–4347 (2009)CrossRefGoogle Scholar
  30. 30.
    H. Fredriksson, Interpretation and use of cooling curves (Thermal Analysis), vol. 15 (Casting) of Metals Handbook. ASM Int., Ohio, USA, 9th edn (1988), pp. 182–185Google Scholar
  31. 31.
    K. Moon, W. Boettinger, U. Kattner, F. Biancaniello, C. Handwerker, J. Electron. Mater. 29, 1122–1136 (2000). doi: 10.1007/s11664-000-0003-x CrossRefGoogle Scholar
  32. 32.
    K.-W. Moon, W. Boettinger, JOM 56, 22–27 (2004)CrossRefGoogle Scholar
  33. 33.
    A. Dinsdale, Calphad 15, 317–425 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Carina Morando
    • 1
  • Osvaldo Fornaro
    • 1
  • Olga Garbellini
    • 1
  • Hugo Palacio
    • 1
  1. 1.Instituto de Física de Materiales Tandil (IFIMAT), Centro de Investigación en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN)Universidad Nacional del Centro de la Provincia de Buenos AiresTandilArgentina

Personalised recommendations