Skip to main content
Log in

Fabrication of Cu2ZnSnS4 absorber layers with adjustable Zn/Sn and Cu/Zn+Sn ratios

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work Cu2ZnSnS4 (CZTS) thin films were successfully prepared by sulfurization of spin coated CuO + ZnO precursor films under Sn and S ambience with different time. Precursor films were synthesized using air-stable inks consist of carboxylate-capped metal oxide nanoparticles. The composition, microstructure and properties of CZTS thin films prepared with different sulfurization time were investigated using inductively coupled plasma-mass spectrometry, X-ray diffraction, scanning electron microscopy, Raman spectroscopy and UV–vis–NIR spectroscopy. The inductively coupled plasma-mass spectrometry results show that mole ratios of Zn/Sn and Cu/(Zn + Sn) in the films can be adjusted by controlling sulfurization time. A composition of Cu/Zn + Sn = ~0.8, and Zn/Sn = ~1.2 can be reached after sulfurizating with proper time. The influence of element composition change was also studied in our work using X-ray diffraction and Raman scattering. Two laser sources of 325 and 514 nm were involved in the Raman scattering analyze in order to identify secondary phases such as ZnS and Cu2−xS. The as-prepared CZTS films with a composition of Cu/Zn + Sn = ~0.8, and Zn/Sn = ~1.2 exhibit a direct optical band gap about 1.45 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Woo, Y. Kim, J. Moon, Energy Environ. Sci. 5, 5340 (2012)

    Article  Google Scholar 

  2. W. Ki, H.W. Hillhouse, Adv. Energy Mater. 1, 732 (2011)

    Article  Google Scholar 

  3. M.T. Winkler, W. Wang, O. Gunawan, H.J. Hovel, T.K. Todorov, D.B. Mitzi, Energy Environ. Sci. (2014). doi:10.1039/c3ee42541j

    Google Scholar 

  4. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Prog. Photovolt. Res. Appl. 21, 72 (2013)

    Article  Google Scholar 

  5. A. Redinger, D.M. Berg, P.J. Dale, S. Siebentritt, J. Am. Chem. Soc. 133, 3320 (2011)

    Article  Google Scholar 

  6. A. Weber, R. Mainz, H.W. Schock, J. Appl. Phys. 107, 013516 (2010)

    Article  Google Scholar 

  7. A. Redinger, S. Siebentritt, Appl. Phys. Lett. 97, 092111 (2010)

    Article  Google Scholar 

  8. A. Redinger, D.M. Berg, P.J. Dale, R. Djemour, L. Gutay, T. Eisenbarth, N. Valle, S. Siebentritt, IEEE J. Photovolt. 1, 200 (2011)

    Article  Google Scholar 

  9. V. Piacente, S. Foglia, P. Scardala, J. Alloy. Compd. 177, 17 (1991)

    Article  Google Scholar 

  10. M. Estruga, A. Roig, C. Domingo, J.A. Ayllón, J. Nanopart. Res. 14, 1053 (2012)

    Article  Google Scholar 

  11. M. Estruga, C. Domingo, J.A. Ayllón, Eur. J. Inorg. Chem. 2010, 1649 (2010)

    Article  Google Scholar 

  12. X.Y. Li, W.F. Liu, F. Yan, H.B. Xie, G.S. Jiang, C.F. Zhu, J. Alloy. Compd. 543, 53 (2012)

    Article  Google Scholar 

  13. C.W. Shi, P.F. Yang, M. Yao, X.Y. Dai, Z. Chen, Thin Solid Films 534, 28 (2013)

    Article  Google Scholar 

  14. O. Vigil-Galán, M. Espíndola-Rodríguez, M. Courel, X. Fontané, D. Sylla, V. Izquierdo-Roca, A. Fairbrother, E. Saucedo, A. Pérez-Rodríguez, Sol. Energy Mat. Sol. C 117, 246 (2013)

    Article  Google Scholar 

  15. G.L. Chen, W.F. Liu, G.S. Jiang, J. Li, C.F. Zhu, J. Alloy. Compd. 531, 91 (2012)

    Article  Google Scholar 

  16. J.J. Scragg, T. Kubart, J.T. Watjen, T. Ericson, M.K. Linnarsson, C. Platzer-Bjorkman, Chem. Mater. 25, 3162 (2013)

    Article  Google Scholar 

  17. Z.H. Su, K.W. Sun, Z.L. Han, H.T. Cui, F.Y. Liu, Y.Q. Lai, J. Li, X.J. Hao, Y.X. Liu, M.A. Green, J. Mater. Chem. A 2, 500 (2014)

    Article  Google Scholar 

  18. Y.C. Cheng, C.Q. Jin, F. Gao, X.L. Wu, W. Zhong, S.H. Li, P.K. Chu, J. Appl. Phys. 106, 123505 (2009)

    Article  Google Scholar 

  19. P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, J. Phys. D Appl. Phys. 43, 215403 (2010)

    Article  Google Scholar 

  20. K.V. Gurava, S.M. Pawara, S.W. Shinb, M.P. Suryawanshia, G.L. Agawanea, P.S. Patila, J.H. Moon, J.H. Yun, J.H. Kim, Appl. Surf. Sci. 283, 74 (2013)

    Article  Google Scholar 

  21. D. Seo, S. Lim, J. Mater. Sci. Mater. Electron. 24, 3756 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program)-2012CB922001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoshun Jiang or Changfei Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, B., Wei, M., Liu, W. et al. Fabrication of Cu2ZnSnS4 absorber layers with adjustable Zn/Sn and Cu/Zn+Sn ratios. J Mater Sci: Mater Electron 25, 3344–3352 (2014). https://doi.org/10.1007/s10854-014-2024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2024-x

Keywords

Navigation