Phase structure, piezoelectric properties, and stability of new K0.48Na0.52NbO3–Bi0.5Ag0.5ZrO3 lead-free ceramics

  • Xiaopeng Wang
  • Jiagang Wu
  • Xiang Lv
  • Hong Tao
  • Xiaojing Cheng
  • Ting Zheng
  • Binyu Zhang
  • Dingquan Xiao
  • Jianguo Zhu


In this work, (1 − x)(K0.48Na0.52)NbO3x(Bi0.5Ag0.5)ZrO3 [(1 − x)KNN–xBAZ] lead-free piezoceramics was prepared by the conventional solid-state method, and a new phase boundary consisting of three phases [e.g., rhombohedral, orthorhombic, and tetragonal (R–O–T) phases] has been constructed by adding both (Bi0.5Ag0.5)2+ and Zr4+. The ceramic with x = 0.05 possesses an R–O–T phase coexistence. A large d 33 of ~347 pC/N and a high T C of ~318 °C have been shown in the ceramic with x = 0.05. In addition, such a ceramic also possesses enhanced thermal and temperature stability of piezoelectricity and ferroelectricity. Both the phase boundary and the grain size play a critical role in large piezoelectricity and good stability. We think that this material belongs to be one of the promising candidates for the high-temperature piezoelectric devices.


Domain Wall Phase Boundary BaTiO3 Piezoelectric Property Ferroelectric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors gratefully acknowledge the supports of the National Science Foundation of China (NSFC Nos. 51102173, 51272164, and 51332003), the Fundamental Research Funds for the Central Universities (2012SCU04A01), and the introduction of talent start funds of Sichuan University (2082204144033). Thank Ms. Hui Wang for measuring the SEM patterns and benefical discussions.


  1. 1.
    T. Yamamoto, Jpn. J. Appl. Phys. 35, 5104–5108 (1996)CrossRefGoogle Scholar
  2. 2.
    B. Jaffe, Academic Press, India, Chap. 7. (1971)Google Scholar
  3. 3.
    A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38(9B), 5564–5567 (1999)CrossRefGoogle Scholar
  4. 4.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)CrossRefGoogle Scholar
  5. 5.
    X.P. Wang, J.G. Wu, D.Q. Xiao, J.G. Zhu, X.J. Cheng, T. Zheng, B.Y. Zhang, X.J. Lou, X.J. Wang, J. Am. Chem. Soc. 136, 2905–2910 (2014)CrossRefGoogle Scholar
  6. 6.
    X.P. Wang, J.G. Wu, D.Q. Xiao, X.J. Cheng, T. Zheng, B.Y. Zhang, X.J. Lou, J.G. Zhu, J. Mater. Chem A. 2, 4122–4126 (2014)CrossRefGoogle Scholar
  7. 7.
    R.Z. Zuo, J. Fu, J. Am. Ceram. Soc. 94(5), 1467–1470 (2011)CrossRefGoogle Scholar
  8. 8.
    J.G. Wu, X.P. Wang, X.J. Cheng, T. Zheng, B.Y. Zhang, D.Q. Xiao, J.G. Zhu, X.J. Lou, J. Appl. Phys. 115, 114104 (2014)CrossRefGoogle Scholar
  9. 9.
    J.G. Wu, Y.Y. Wang, D.Q. Xiao, J.G. Zhu, P. Yu, L. Wu, W.J. Wu, Jpn. J. Appl. Phys. 46, 7375–7377 (2007)CrossRefGoogle Scholar
  10. 10.
    R.Z. Zuo, X.S. Fang, C. Ye, Appl. Phys. Lett. 90, 092904 (2007)CrossRefGoogle Scholar
  11. 11.
    C.A. Randall, N. Kim, J. Kucera, W.W. Cao, T.R. Shorut, J. Am. Ceram. Soc. 81(3), 677 (1998)CrossRefGoogle Scholar
  12. 12.
    X.P. Wang, J.G. Wu, X.J. Cheng, B.Y. Zhang, D.Q. Xiao, J.G. Zhu, X.J. Wang, X.J. Lou, J. Phys. D Appl. Phys. 46, 495305 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Du, D. Liu, F. Tang, D. Zhu, W. Zhou, J. Am. Ceram. Soc. 90(9), 2824–2829 (2007)CrossRefGoogle Scholar
  14. 14.
    W.W. Gao, C.A. Randall, J. Phys. Chem. Solids 57, 1499–1505 (1996)Google Scholar
  15. 15.
    J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153–1177 (2009)CrossRefGoogle Scholar
  16. 16.
    S.J. Zhang, R. Xia, T.R. Shrout, Appl. Phys. Lett. 9, 132913 (2007)CrossRefGoogle Scholar
  17. 17.
    C. Lei, Z.G. Ye, Appl. Phys. Lett. 93, 042901 (2008)CrossRefGoogle Scholar
  18. 18.
    W. Liang, W. Wu, D. Xiao, J. Zhu, J. Am. Ceram. Soc. 94(12), 4317 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Wu, D. Xiao, Y. Wang, J. Zhu, P. Yu, Y.H. Jiang, J. Appl. Phys. 102, 114113 (2007)CrossRefGoogle Scholar
  20. 20.
    Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanini, Physical. Review. B. 70, 0163–1829 (2004)Google Scholar
  21. 21.
    D.M. Lin, K.W. Kwork, H.L.W. Chan, J. Appl. Phys. 102, 034102 (2007)CrossRefGoogle Scholar
  22. 22.
    J. Du, X. Yi, C. Ban, Z. Xu, P. Zhao, C. Wang, Ceram. Int. 39, 2135–2139 (2013)CrossRefGoogle Scholar
  23. 23.
    T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111–124 (2007)CrossRefGoogle Scholar
  24. 24.
    Y. Gao, J.L. Zhang, X.J. Zong, C.L. Wang, J.C. Li, J. Appl. Phys. 107, 074101 (2010)CrossRefGoogle Scholar
  25. 25.
    L.M. Zheng, J.F. Wang, Q.Z. Wu, R. Zhang, C.M. Wang, Z.G. Gai, Phys. Status. Solid. A. 208(4), 915–918 (2010)Google Scholar
  26. 26.
    R. Herbiet, U. Robels, H. Dederichs, G. Arlt, Ferroelectrics 98, 107–121 (1989)CrossRefGoogle Scholar
  27. 27.
    D. Damianovic, M. Demartin, Appl. Phys. Lett. 68(21), 3046–3048 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xiaopeng Wang
    • 1
  • Jiagang Wu
    • 1
  • Xiang Lv
    • 1
  • Hong Tao
    • 1
  • Xiaojing Cheng
    • 1
  • Ting Zheng
    • 1
  • Binyu Zhang
    • 1
  • Dingquan Xiao
    • 1
  • Jianguo Zhu
    • 1
  1. 1.Department of Materials ScienceSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations