Solvothermal synthesis of hierarchical Co3O4 flower-like microspheres for superior ethanol gas sensing properties

  • Hongwei Che
  • Aifeng Liu
  • Junxian Hou
  • Jingbo Mu
  • Yongmei Bai
  • Shufeng Zhao
  • Xiaoliang Zhang
  • Hongjiang He


In this paper, hierarchical Co3O4 flower-like microspheres have been successfully synthesized on the basis of morphology-conserved transformation method. The key step of this method is to construct flower-like microstructures of the cobalt-containing precursors via manipulating the synthetic parameters in a facile ethylene glycol mediated solvothermal reaction. The as-prepared flower-like microspheres are formed from the assembly of many two-dimensional nanosheets, accompanied by an outside-in dissolution and recrystallization process. Finally, hierarchical Co3O4 microspheres with conserved flower-like morphology are obtained through the moderate calcination. When evaluated as a gas sensor, the obtained Co3O4 flower-like microspheres exhibit a good response and sensitivity towards ethanol gas, suggesting their promising potential for gas sensors application.


High Resolution Transmission Electron Microscopy Co3O4 PEG2000 High Resolution Transmission Electron Microscopy Solvothermal Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Grant No. 21206025) and the Natural Science Foundation of Hebei Province (Grant No. B2013402008).


  1. 1.
    Z.L. Wang, Adv. Mater. 15, 432 (2003)CrossRefGoogle Scholar
  2. 2.
    R.S. Devan, R.A. Patil, J.H. Lin, Y.M. Ma, Adv. Funct. Mater. 22, 3326 (2012)CrossRefGoogle Scholar
  3. 3.
    H. Kuhlenbeck, S. Shaikhutdinov, H.J. Freund, Chem. Rev. 113, 3986 (2013)CrossRefGoogle Scholar
  4. 4.
    A.L. Tiano, C. Koenigsmann, A.C. Santulli, S.S. Wong, Chem. Commun. 46, 8093 (2010)CrossRefGoogle Scholar
  5. 5.
    P.X. Gao, Z.L. Wang, J. Am. Chem. Soc. 125, 11299 (2003)CrossRefGoogle Scholar
  6. 6.
    W. Shi, S. Song, H. Zhang, Chem. Soc. Rev. 42, 5714 (2013)CrossRefGoogle Scholar
  7. 7.
    L. Hu, B. Qu, C. Li, Y. Chen, L. Mei, D. Lei, L. Chen, Q. Li, T. Wang, J. Mater. Chem. A 1, 5596 (2013)CrossRefGoogle Scholar
  8. 8.
    A. Pan, H.B. Wu, L. Yu, X.W. Lou, Angew. Chem. Int. Edit. 52, 2226 (2013)CrossRefGoogle Scholar
  9. 9.
    X.Y. Yu, X.Z. Yao, T. Luo, Y. Jia, J.H. Liu, X.J. Huang, ACS Appl. Mater. Interface 6, 3689 (2014)CrossRefGoogle Scholar
  10. 10.
    Z. Jia, L. Yang, Q. Wang, J. Liu, M. Ye, R. Zhu, Mater. Chem. Phys. 145, 116 (2014)CrossRefGoogle Scholar
  11. 11.
    Z.H. Dong, H. Ren, C.M. Hessel, J. Wang, R. Yu, Q. Jin, M. Yang, Z. Hu, Y. Chen, Z. Tang, H. Zhao, D. Wang, Adv. Mater. 26, 905 (2014)CrossRefGoogle Scholar
  12. 12.
    X. Xie, Y. Li, Z.Q. Liu, M. Haruta, W. Shen, Nature 458, 746 (2009)CrossRefGoogle Scholar
  13. 13.
    C. Sun, S. Rajasekhara, Y. Chen, J.B. Goodenough, Chem. Commun. 47, 12852 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Xiong, J.S. Chen, X.W. Lou, H.C. Zeng, Adv. Funct. Mater. 22, 861 (2012)CrossRefGoogle Scholar
  15. 15.
    X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, ACS Nano 6, 3206 (2012)CrossRefGoogle Scholar
  16. 16.
    H. Nguyen, S.A. El-Safty, J. Phys. Chem. C 115, 8466 (2011)CrossRefGoogle Scholar
  17. 17.
    H. Cheng, Z.G. Lu, J.Q. Deng, C.Y. Chung, K. Zhang, Y.Y. Li, Nano Res. 3, 895 (2010)CrossRefGoogle Scholar
  18. 18.
    Z. Fei, S. He, L. Li, W. Ji, C.T. Au, Chem. Commun. 48, 853 (2012)CrossRefGoogle Scholar
  19. 19.
    Y. Cao, F. Yuang, M. Yao, J.H. Bang, J.H. Lee, CrystEngComm 16, 826 (2014)CrossRefGoogle Scholar
  20. 20.
    L. Tian, H. Zou, J. Fu, X. Yang, Y. Wang, H. Guo, X. Fu, C. Liang, M. Wu, P.K. Shen, Q. Gao, Adv. Funct. Mater. 20, 617 (2010)CrossRefGoogle Scholar
  21. 21.
    B. Li, Y. Xie, C. Wu, Z. Li, J. Zhang, Mater. Chem. Phys. 99, 479 (2006)CrossRefGoogle Scholar
  22. 22.
    W. Mei, J. Huang, L. Zhu, Z. Ye, Y. Mai, J. Tu, J. Mater. Chem. 22, 9315 (2012)CrossRefGoogle Scholar
  23. 23.
    H. Huang, W. Zhu, X. Tao, Y. Xia, Z. Yu, J. Fang, Y. Gan, W. Zhang, ACS Appl. Mater. Interface 4, 5974 (2012)CrossRefGoogle Scholar
  24. 24.
    C.V. Schenck, J.G. Dillard, J. Colloid Interface Sci. 95, 398 (1983)CrossRefGoogle Scholar
  25. 25.
    C.C. Li, X.M. Yin, Q.H. Li, L.B. Chen, T.H. Wang, Chem. Eur. J. 17, 1596 (2011)CrossRefGoogle Scholar
  26. 26.
    D. Wang, Q. Wang, T. Wang, Inorg. Chem. 50, 6482 (2011)CrossRefGoogle Scholar
  27. 27.
    A. Cao, J.D. Monnell, C. Matranga, J. Wu, L. Cao, D. Gao, J. Phys. Chem. C 111, 18624 (2007)CrossRefGoogle Scholar
  28. 28.
    X. Jiang, Y. Wang, T. Herricks, Y. Xia, J. Mater. Chem. 14, 695 (2004)CrossRefGoogle Scholar
  29. 29.
    C. Sun, X. Su, F. Xiao, C. Niu, J. Wang, Sens. Actuators B 157, 681 (2011)CrossRefGoogle Scholar
  30. 30.
    L. Man, B. Niu, H. Xu, B. Cao, J. Wang, Mater. Res. Bull. 46, 1097 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Composite Materials and Engineering, College of Equipment ManufacturingHebei University of EngineeringHandanPeople’s Republic of China

Personalised recommendations