Enhancement in the photocatalytic activity of Ag loaded N-doped TiO2 nanocomposite under sunlight

  • R. S. Dhabbe
  • A. N. Kadam
  • M. B. Suwarnkar
  • M. R. Kokate
  • K. M. Garadkar


A N-doped titania–silver nanocomposites have been prepared by simple microwave assisted and impregnation–reduction method for the first time. As synthesized nanocomposites with different Ag contents were characterized for their phase purity, morphology, particle size, optical properties and elemental composition. It is found that N-doped TiO2 silver nanocomposites are pure in anatase phase with an average crystallite size of 10 nm. The catalyst was tested for dye degradation and photodegradation efficiency was found to be 99.6 and 88.7 % within 90 min under UV and sunlight respectively. A 40 % enhancement in the photodegradation efficiency was achieved by Ag loading in comparison with the N-TiO2 under sunlight. The fluorescence quenching of Ag loaded N-TiO2 indicates decrease in rate of electron–hole pair recombination that enhances photocatalytic performance. The effects of photocatalytic operational parameters such as method of surface modification, catalyst loading and irradiation sources on the photodegradation of methyl orange were also investigated.


TiO2 Photocatalytic Activity Methyl Orange Photodegradation Efficiency Methyl Orange Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors (KMG) is thankful to DST, New Delhi, India for providing the Financial Support under Major Research Project: SR/S1/PC/0041/2010. Authors are also thankful to Director, SAIF, NEHU, Shilong for providing TEM facility.


  1. 1.
    H. Sun, Y. Bai, Y. Cheng, W. Jin, N. Xu, Ind. Eng. Chem. Res. 45, 4971–4976 (2006)CrossRefGoogle Scholar
  2. 2.
    S. Tojo, T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C 112, 14948–14954 (2008)CrossRefGoogle Scholar
  3. 3.
    M.S. Wong, S.W. Hsu, K.K. Rao, C.P. Kumar, J. Mol. Catal. A: Chem. 279, 20–26 (2008)CrossRefGoogle Scholar
  4. 4.
    P.P. Hnakare, R.P. Patil, A.V. Jadhav, K.M. Garadkar, R. Sasikala, Appl. Cat. B: Environ. 107, 333–339 (2011)CrossRefGoogle Scholar
  5. 5.
    H. Kato, A. Kudo, J. Phys. Chem. B 106, 5029–5034 (2006)CrossRefGoogle Scholar
  6. 6.
    A. Fujishima, K. Honda, Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  7. 7.
    C.C. Chen, C.S. Lu, Y.C. Chung, J.L. Jan, J. Hazard. Mater. 141, 520–528 (2007)CrossRefGoogle Scholar
  8. 8.
    Q. Sun, Y. Xu, J. Phys. Chem. C 114, 18911–18918 (2010)CrossRefGoogle Scholar
  9. 9.
    C. Tiejun, L. Yuchao, P. Zhenshan, L. Yunfei, W. Zongyuan, D. Qian, J. Environ. Sci. 21, 997–1004 (2009)CrossRefGoogle Scholar
  10. 10.
    X. Chenga, X. Yua, Z. Xing, Appl. Surf. Sci. 258, 7644–7650 (2012)CrossRefGoogle Scholar
  11. 11.
    R. Su, R. Tiruvalam, Q. He, N. Dimitratos, L. Kesavan, C. Hammond, J. Antonio Lopez-Sanchez, R. Bechstein, C.J. Kiely, G.J. Hutchings, F. Besenbacher, ACS Nano 6, 6284–6292 (2012)CrossRefGoogle Scholar
  12. 12.
    J. Choi, H. Park, M.R. Hoffmann, J. Phys. Chem. C 114, 783–792 (2010)CrossRefGoogle Scholar
  13. 13.
    H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, Y. Lu, J. Am. Chem. Soc. 129, 4538–4539 (2007)CrossRefGoogle Scholar
  14. 14.
    Y. Gai, J. Li, S.S. Li, J.B. Xia, S.H. Wei, Phys. Rev. Lett. 102, 36402–36405 (2009)CrossRefGoogle Scholar
  15. 15.
    D. Wang, Z.H. Zhou, H. Yang, K.B. Shen, Y. Huang, S. Shen, J. Mater. Chem. 22, 16306–16311 (2012)CrossRefGoogle Scholar
  16. 16.
    P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Sun, Y. Liu, J. Mater. Chem. 21, 17746–17753 (2011)CrossRefGoogle Scholar
  17. 17.
    H. Zhang, G. Chen, Environ. Sci. Technol. 43, 2905–2910 (2009)CrossRefGoogle Scholar
  18. 18.
    M.L. de Souza, P. Corio, Appl. Cata. B: Environ. 136, 325–333 (2013)CrossRefGoogle Scholar
  19. 19.
    E. Kowalska, O. Omar Prieto Mahaney, R. Abe, B. Ohtani, Phys. Chem. Chem. Phys. 12, 2344–2355 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Sarina, B. Sagala, Y. Huang, C. Chen, E. Jaatinen, J. Jia, G.A. Ayoko, B. Zhaorigetu, H. Zhu, Green Chem. 16, 331–341 (2014)CrossRefGoogle Scholar
  21. 21.
    B. Xin, L. Jing, Z. Ren, B. Wang, H. Fu, J. Phys. Chem. B 109, 2805–2809 (2005)CrossRefGoogle Scholar
  22. 22.
    T.C. Damato, C.C.S. de Oliveira, R.A. Ando, P.H.C. Camargo, Langmuir 29, 1642–1649 (2013)CrossRefGoogle Scholar
  23. 23.
    J.T. Park, J.H. Koh, J.A. Seo, Y.S. Cho, J.H. Kim, Appl. Surf. Sci. 257, 8301–8306 (2011)CrossRefGoogle Scholar
  24. 24.
    V.K. Sharma, R.A. Yngard, Y. Lin, Adv. Colloid Interface Sci. 145, 83–96 (2009)CrossRefGoogle Scholar
  25. 25.
    E. Stratakis, E. Kymakis, Mater. Today 16, 133–146 (2013)CrossRefGoogle Scholar
  26. 26.
    Y. Gao, P. Fang, F. Chen, Y. Liu, Z. Liu, D. Wang, Y. Dai, Appl. Surf. Sci. 265, 796–801 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Wu, B. Yang, Y. Lv, Z. Fu, J. Xu, T. Guo, Y. Zhao, Appl. Surf. Sci. 256, 7125–7130 (2010)CrossRefGoogle Scholar
  28. 28.
    K.M. Reddy, S.V. Manorama, A.R. Reddy, Mater. Chem. Phys. 78, 239–245 (2002)CrossRefGoogle Scholar
  29. 29.
    K.M. Garadkar, L.A. Ghule, K.B. Sapnar, S.D. Dhole, Mater. Res. Bull. 48, 1105–1109 (2013)CrossRefGoogle Scholar
  30. 30.
    X. Chen, C. Burda, J. Phys. Chem. B 108, 15446–15449 (2004)CrossRefGoogle Scholar
  31. 31.
    J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, J. Am. Chem. Soc. 131, 12290–12297 (2009)CrossRefGoogle Scholar
  32. 32.
    S. Sakthivel, M. Janczarek, H. Kisch, J. Phys. Chem. B 108, 19384–19387 (2004)CrossRefGoogle Scholar
  33. 33.
    X. Cheng, Z. Xing, X. Yu, Appl. Surf. Sci. 258, 3244–3248 (2012)CrossRefGoogle Scholar
  34. 34.
    L. Gomathi Devi, K.M. Reddy, Appl. Surf. Sci. 257, 6821–6828 (2011)CrossRefGoogle Scholar
  35. 35.
    K.M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanable, J. Am. Chem. Soc. 130, 1676–1680 (2008)CrossRefGoogle Scholar
  36. 36.
    G. Sauthier, E. György, A. Figueras, R.S. Sanchez, J. Herno, J. Phys. Chem. C 116, 14534–14540 (2012)CrossRefGoogle Scholar
  37. 37.
    Y. Yang, J. Wen, J. Wei, R. Xiong, J. Shi, C. Pan, ACS Appl. Mater. Interfaces 5, 6201–6207 (2013)CrossRefGoogle Scholar
  38. 38.
    X. Pan, Y.-J. Xu, J. Phys. Chem. C 117, 17996–18005 (2013)CrossRefGoogle Scholar
  39. 39.
    T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, M.M. Müller, H.J. Kleebe, K. Rachut, J. Ziegler, A. Klein, W. Jaegermann, J. Phys. Chem. C 117, 22098–22110 (2013)CrossRefGoogle Scholar
  40. 40.
    G. Liu, H.G. Yang, X. Wang, L. Cheng, H. Lu, L. Wang, G.Q. Lu, H.M. Cheng, J. Phys. Chem. C 113, 21784–21788 (2009)CrossRefGoogle Scholar
  41. 41.
    W.Y. Hui, S.J. Hong, Acta Phys. Chim. Sin. 28, 1313–1319 (2012)Google Scholar
  42. 42.
    S. Qaradawi, S.R. Salman, J. Photochem. Photobiol. A: Chem. 148, 161–168 (2002)CrossRefGoogle Scholar
  43. 43.
    C. Girginov, P. Stefchev, P. Vitanov, Hr Dikov, J. Eng. Sci. Technol. Rev 5(4), 14–17 (2012)Google Scholar
  44. 44.
    B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugesan, J. Hazard. Mater. 89, 303–317 (2002)CrossRefGoogle Scholar
  45. 45.
    O.K. Mahadwad, P.A. Parikh, R.V. Jasra, C. Patil, Bull. Mater. Sci. 34, 551–556 (2011)CrossRefGoogle Scholar
  46. 46.
    S.K. Pardeshi, A.B. Patil, Sol. Energy 82, 700–705 (2008)CrossRefGoogle Scholar
  47. 47.
    D. Kong, J.Z. Yie Tan, F. Yang, J. Zeng, X. Zhang, Appl. Surf. Sci. 277, 105–110 (2013)CrossRefGoogle Scholar
  48. 48.
    X. Yin, W. Que, Y. Liao, H. Xie, D. Fei, Colloids Surf. A: Physicochem. Eng. Asp. 410, 153–158 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • R. S. Dhabbe
    • 1
  • A. N. Kadam
    • 1
  • M. B. Suwarnkar
    • 1
  • M. R. Kokate
    • 1
  • K. M. Garadkar
    • 1
  1. 1.Nanomaterials Research Laboratory, Department of ChemistryShivaji UniversityKolhapurIndia

Personalised recommendations