Optical and magnetic properties of Mn doped ZnO samples prepared by solid state route

  • Gunjan Srinet
  • Ravindra Kumar
  • Vivek Sajal


The structural, optical and magnetic properties of Zn1−xMnxO (x = 0.02, 0.04 and 0.06) prepared by solid state route are presented. The rietveld refined X-ray data revealed single hexagonal phase with the space group P63mc in all samples. Significant blue shift with Mn doping is observed in UV–Visible studies, supported by photoluminescence spectra showing a high intensity UV emission peak followed by the low intensity green emission band corresponding to oxygen vacancies and defects. Photoluminescence spectra also suggested that doping of Mn can affect defects and oxygen vacancies in ZnO and giving the possibility of band gap tuning for potential applications in optoelectronic devices. All single-phase samples exhibit paramagnetic behaviour at room temperature, involving small proportion of defect mediated ferromagnetic ordering.


Deep Level Emission Solid State Route Near Band Edge Emission Blue Emission Peak Conventional Solid State Reaction Route 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  2. 2.
    Z. Wang, J. Song, Science 312, 242 (2006)CrossRefGoogle Scholar
  3. 3.
    Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Freitag, M. Claus, S. Wille, A. Kovalev, S.N. Gorb, R. Adelung, Part. Part. Syst. Character. 30, 775 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Sharma, V. Singh, O. Parkash, R.K. Dwivedi, Appl. Phys. A 112, 984 (2013)CrossRefGoogle Scholar
  5. 5.
    D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. Kumar Mishra, R. Adelung, Adv. Mater. 26, 1541 (2014)CrossRefGoogle Scholar
  6. 6.
    Y.K. Mishra, V.S.K. Chakravadhanula, V. Hrkac, S. Jebril, D.C. Agarwal, S. Mohapatra, D.K. Avasthi, L. Kienle, R. Adelung, J. Appl. Phys. 112, 064308 (2012)CrossRefGoogle Scholar
  7. 7.
    I. Balti, A. Mezni, A.D. Omrani, P. Leone, B. Viana, O. Brinza, L. Smiri, N. Jouini, J. Phys. Chem. C 115, 15758 (2011)CrossRefGoogle Scholar
  8. 8.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)CrossRefGoogle Scholar
  9. 9.
    H. Shi, Y. Duan, Nanoscale Res. Lett. 4, 480 (2009)CrossRefGoogle Scholar
  10. 10.
    Z.H. Zhang, X. Wang, J.B. Xu, S. Muller, C. Ronning, Q. Li, Nat. Nanotechnol. 4, 523 (2009)CrossRefGoogle Scholar
  11. 11.
    Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Science 291, 854 (2001)CrossRefGoogle Scholar
  12. 12.
    J.K. Salem, T.M. Hammad, J. Mater. Sci. Mater. Electron. 24, 1670 (2013)CrossRefGoogle Scholar
  13. 13.
    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2, 673 (2003)CrossRefGoogle Scholar
  14. 14.
    G. Srinet, R. Kumar, V. Sajal, J. Appl. Phys. 114, 033912 (2013)CrossRefGoogle Scholar
  15. 15.
    G. Srinet, P. Varshney, R. Kumar, V. Sajal, P.K. Kulriya, M. Knobel, S.K. Sharma, Ceram. Int. 39, 6077 (2013)CrossRefGoogle Scholar
  16. 16.
    J.H. Yang, L.Y. Zhao, Y.J. Zhang, Y.X. Wang, H.L. Liu, M.B. Wei, Cryst. Res. Technol. 43, 999 (2008)CrossRefGoogle Scholar
  17. 17.
    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, J. Vac. Sci. Technol. B 22, 932 (2004)CrossRefGoogle Scholar
  18. 18.
    X.L. Wang, C.Y. Luan, Q. Shao, A. Pruna, C.W. Leung et al., Appl. Phys. Lett. 102, 102112 (2013)CrossRefGoogle Scholar
  19. 19.
    B.N. Dole, V.D. Mote, V.R. Huse, Y. Purushotham, M.K. Lande, K.M. Jadhav, S.S. Shah, Curr. Appl. Phys. 11, 762 (2011)CrossRefGoogle Scholar
  20. 20.
    S. Sharma, V. Singh, R.K. Kotnala, R.K. Dwivedi, J. Mater. Sci. Mater. Electron. 25, 1915 (2014)CrossRefGoogle Scholar
  21. 21.
    R. Silva, M. Zaniquelli, Colloid. Surf. A 198, 551 (2002)Google Scholar
  22. 22.
    G. Srinet, R. Kumar, V. Sajal, Ceram. Int. 40, 4025 (2014)CrossRefGoogle Scholar
  23. 23.
    X.L. Wang, C.Y. Luan, Q. Shao, A. Pruna, C.W. Leung et al., Appl. Phys. Lett. 102, 102112 (2013)CrossRefGoogle Scholar
  24. 24.
    S. Mal, S. Nori, S. Mula, J. Narayan, J.T. Prater, J. Appl. Phys. 112, 113917 (2012)CrossRefGoogle Scholar
  25. 25.
    E. Burstein, Phys. Rev. 93, 632 (1954)CrossRefGoogle Scholar
  26. 26.
    T.S. Moss, Proc. Phys. Soc. Lond. Sect. B 67, 775 (1954)CrossRefGoogle Scholar
  27. 27.
    X. Jin, M. Gotz, S. Wille, Y.K. Mishra, R. Adelung, C. Zollfrank, Adv. Mater. 25, 1342 (2013)CrossRefGoogle Scholar
  28. 28.
    U. Ilyas, R.S. Rawat, G. Roshan, T.L. Tan, P. Lee, S.V. Springham, S. Zhang, L. Fengji, R. Chen, H.D. Sun, Appl. Surf. Sci. 258, 890 (2011)CrossRefGoogle Scholar
  29. 29.
    B. Panigrahy, M. Aslam, D. Bahadur, Nanotechnology 23, 115601 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Mater. Sci. Semicond. Process. 11, 6 (2008)CrossRefGoogle Scholar
  31. 31.
    X. Wang, R. Zheng, Z. Liu, H.P. Ho, J. Xu, S.P. Ringer, Nanotechnology 19, 455702 (2008)CrossRefGoogle Scholar
  32. 32.
    J. Blasco, F. Bartolome, L.M. Garcia, J. Garcia, J. Mater. Chem. 16, 2282 (2006)CrossRefGoogle Scholar
  33. 33.
    N.H. Hong, J. Sakai, N.T. Huong, N. Poirot, A. Ruyter, Phys. Rev. B 75, 045336 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Physics, Materials Science and EngineeringJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations