Bifacial illuminated PbS quantum dot-sensitized solar cells with translucent CuS counter electrodes

  • Yongguang Tu
  • Jihuai Wu
  • Zhang Lan
  • Yibing Lin
  • Qin Liu
  • Bingcheng Lin
  • Guozhang Liu


This paper reports the optimization of the TiO2 photoanode and the fabrication of bifacial illuminated PbS quantum dot-sensitized solar cells (QDSSCs) with translucent CuS counter electrodes. TiO2 photoanode is prepared by introducing a compact TiO2 layer between FTO substrate and TiO2 film with titanium diisopropoxide bis(acetylacetonate) in 1-butanol and post-treatment with TiCl4 aqueous solution; then, PbS quantum dots (QDs) are deposited on the surface of TiO2 film by successive ionic layer adsorption and reaction method; also, by means of control of the TiO2 surface charge, QD density of TiO2 film is improved by adding triethanolamine into the cationic precursor solution. Using this optimized TiO2 photoanode and a translucent CuS counter electrode, a bifacial illuminated PbS QDSSC is fabricated. The preparation conditions are optimized and the surface morphology and electrochemical properties of TiO2 photoanodes are characterized. The bifacial illuminated PbS QDSSC achieves a power conversion efficiency of 2.16 %, which is increased by 48.97 % compared with the single illuminated QDSSC.


TiO2 TiO2 Film Power Conversion Efficiency Electrochemical Impedance Spectroscopic Mesoporous TiO2 Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial joint support by the National Natural Science Foundation of China (Nos. 90922028, U1205112, 50842027, 61306077) and the specialized research fund for the doctoral program of Higher University, Ministry of Education, China (No. 20123501110001).


  1. 1.
    P.V. Kamat, J. Phys. Chem. C 112, 18737 (2008)CrossRefGoogle Scholar
  2. 2.
    P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, Chem. Rev. 110, 6664 (2010)CrossRefGoogle Scholar
  3. 3.
    I. Mora-Sero, J. Bisquert, J. Phys. Chem. Lett. 1, 3046 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Lee, H.C. Leventis, S.J. Moon, P. Chen, S. Ito, S.A. Haque, T. Torres, F. Nüesch, T. Geiger, S.M. Zakeeruddin, M. Grätzel, M.K. Nazeeruddin, Adv. Funct. Mater. 19, 2735 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, D. Velauthapillai, R. Balasundaraprabhu, S. Agilan, J. Mater. Sci. Mater. Electron. 24, 3014 (2013)CrossRefGoogle Scholar
  6. 6.
    A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, J.C. Johnson, Chem. Rev. 110, 6873 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Kim, S.H. Im, M. Kang, J.H. Heo, S.I. Seok, S.W. Kim, I.M. Sero, J. Bisquert, Phys. Chem. Chem. Phys. 14, 14999 (2012)CrossRefGoogle Scholar
  8. 8.
    M.C. Hanna, A.J. Nozik, J. Appl. Phys. 100, 074510 (2006)CrossRefGoogle Scholar
  9. 9.
    S. Gorer, G. Hodes, J. Phys. Chem. 98, 5338 (1994)CrossRefGoogle Scholar
  10. 10.
    R. Vogel, K. Pohl, H. Weller, Chem. Phys. Lett. 174, 241 (1990)CrossRefGoogle Scholar
  11. 11.
    N.P. Benehkohal, V. Gonzalez-Pedro, P.B. Boix, S. Chavhan, R. Tena-Zaera, G.P. Demopoulos, I. Mora-Sero, J. Phys. Chem. C 116, 16391 (2012)CrossRefGoogle Scholar
  12. 12.
    A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban, U. Banin, ACS Nano 4, 5962 (2010)CrossRefGoogle Scholar
  13. 13.
    I. Mora-Sero, S. Gimenez, F. Fabregat-Santiago, R. Gomez, Q. Shen, T. Toyoda, J. Bisquert, Acc. Chem. Res. 42, 1848 (2009)CrossRefGoogle Scholar
  14. 14.
    J.H. Rhee, C.C. Chung, E.W. Diau, NPG Asia Mater. 5(68), 1 (2013)Google Scholar
  15. 15.
    E.H. Sargent, Nat. Photonics 6, 133 (2012)CrossRefGoogle Scholar
  16. 16.
    J.W. Lee, D.Y. Son, T.K. Ahn, H.W. Shin, I.Y. Kim, S.J. Hwang, M.J. Ko, S. Suil, H. Han, N.G. Park, Sci. Rep. 3(1050), 1 (2013)Google Scholar
  17. 17.
    A.H. Ip, S.M. Thon, S.H. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L.R. Rollny, G.H. Carey, A. Fischer, K.W. Kemp, I.J. Kramer, Z. Ning, A.J. Labelle, K.W. Chou, A. Amassian, E.H. Sargent, Nat. Nanotechnol. 7, 577 (2012)CrossRefGoogle Scholar
  18. 18.
    C.J. Raj, S.N. Karthick, S. Park, K.V. Hemalatha, S.K. Kim, K. Prabakar, H.J. Kim, J. Power Sources 248, 439 (2014)CrossRefGoogle Scholar
  19. 19.
    A. Braga, S. Gimenez, I. Concina, A. Vomiero, I. Mora-Sero, J. Phys. Chem. Lett. 2, 454 (2011)CrossRefGoogle Scholar
  20. 20.
    L.J. Diguna, Q. Shen, J. Kobayashi, T. Toyoda, Appl. Phys. Lett. 91, 023116 (2007)CrossRefGoogle Scholar
  21. 21.
    N. Guijarro, J.M. Campiña, Q. Shen, T. Toyoda, T. Lana-Villarreal, R. Gómez, Phys. Chem. Chem. Phys. 13, 12024 (2011)CrossRefGoogle Scholar
  22. 22.
    D.A.R. Barkhouse, A.G. Pattantyus-Abraham, L. Levina, E.H. Sargent, ACS Nano 2, 2356 (2008)CrossRefGoogle Scholar
  23. 23.
    N. Zhao, T.P. Osedach, L.Y. Chang, S.M. Geyer, D. Wanger, M.T. Binda, A.C. Arango, M.G. Bawendi, V. Bulovic, ACS Nano 4, 3743 (2010)CrossRefGoogle Scholar
  24. 24.
    E.M. Barea, M. Shalom, S. Giménez, I. Hod, I. Mora-Seró, A. Zaban, J. Bisquert, J. Am. Chem. Soc. 132, 6834 (2010)CrossRefGoogle Scholar
  25. 25.
    N. Guijarro, T. Lana-Villarreal, T. Lutz, S.A. Haque, R. Gómez, J. Phys. Chem. Lett. 3, 3367 (2012)CrossRefGoogle Scholar
  26. 26.
    C. Bullen, P. Mulvaney, Langmuir 22, 3007 (2006)CrossRefGoogle Scholar
  27. 27.
    F.P. Zamborini, J.F. Hicks, R.W. Murray, J. Am. Chem. Soc. 122, 4514 (2000)CrossRefGoogle Scholar
  28. 28.
    S. Krüger, S.G. Hickey, S. Tscharntke, A. Eychmüller, J. Phys. Chem. C 115, 13047 (2011)CrossRefGoogle Scholar
  29. 29.
    S. Do Sung, I. Lim, P. Kang, C. Lee, W.I. Lee, Chem. Commun. 49, 6054 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Dong, S. Jia, J. Chen, B. Li, J. Zheng, J. Zhao, Z. Wang, Z. Zhu, J. Mater. Chem. 22, 9745 (2012)CrossRefGoogle Scholar
  31. 31.
    B.L. He, Q.W. Tang, M. Wang, C.Q. Ma, S.S. Yuan, J. Power Sources 256, 8 (2014)CrossRefGoogle Scholar
  32. 32.
    Q.W. Tang, H.Y. Cai, S.S. Yuan, X. Wang, J. Mater. Chem. A. 1, 317 (2013)CrossRefGoogle Scholar
  33. 33.
    Z. Tachan, M. Shalom, I. Hod, S. Rühle, S. Tirosh, A. Zaban, J. Phys. Chem. C 115, 6162 (2011)CrossRefGoogle Scholar
  34. 34.
    Z.S. Yang, C.Y. Chen, C.W. Liu, C.L. Li, H.T. Chang, Adv. Energy Mater. 1, 259 (2011)CrossRefGoogle Scholar
  35. 35.
    J.G. Radich, R. Dwyer, P.V. Kamat, J. Phys. Chem. Lett. 2, 2453 (2011)CrossRefGoogle Scholar
  36. 36.
    M.H. Deng, S.Q. Huang, Q.X. Zhang, D.M. Li, Y.H. Luo, Q. Shen, T. Toyoda, Q.B. Meng, Chem. Lett. 39, 1168 (2010)CrossRefGoogle Scholar
  37. 37.
    J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, Nanoscale 3, 4088 (2011)CrossRefGoogle Scholar
  38. 38.
    H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, D. Jung, B. Park, Curr. Appl. Phys. 12, 737 (2012)CrossRefGoogle Scholar
  39. 39.
    J.W. Lee, J.D. Hong, N.G. Park, Chem. Commun. 49, 6448 (2013)CrossRefGoogle Scholar
  40. 40.
    Z. Lan, J.H. Wu, J.M. Lin, M.L. Huang, J. Mater. Chem. 21, 15552 (2011)CrossRefGoogle Scholar
  41. 41.
    W. Ke, G. Fang, H. Lei, P. Qin, H. Tao, W. Zeng, J. Wang, X. Zhao, J. Power Sources 248, 809 (2014)CrossRefGoogle Scholar
  42. 42.
    N. Fuke, R. Katoh, A. Islam, M. Kasuya, A. Furube, A. Fukui, Y. Chiba, R. Komiya, R. Yamanaka, L. Han, H. Harima, Energy Environ. Sci. 2, 1205 (2009)CrossRefGoogle Scholar
  43. 43.
    M. Kosmulski, Adv. Colloid Interface Sci. 99, 255 (2002)CrossRefGoogle Scholar
  44. 44.
    J. Wu, Y. Li, Q. Tang, G. Yue, J. Lin, M. Huang, L. Meng, Sci. Rep. 4(4028), 1 (2014)Google Scholar
  45. 45.
    Q. Wang, J.E. Moser, M. Gratzel, J. Phys. Chem. B. 109, 4945 (2005)Google Scholar
  46. 46.
    R. Gao, Z. Liang, J. Tian, Q. Zhang, L. Wang, G. Cao, Nano Energy 2, 40 (2013)CrossRefGoogle Scholar
  47. 47.
    B.L. He, X.M. Meng, Q.W. Tang, P.J. Li, S.S. Yuan, P.Z. Yang, J. Power Sources 260, 180 (2014)CrossRefGoogle Scholar
  48. 48.
    H.Y. Cai, Q.W. Tang, B.L. He, P.J. Li, J. Power Sources 258, 117 (2014)CrossRefGoogle Scholar
  49. 49.
    R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Electrochim. Acta 47, 4213 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yongguang Tu
    • 1
  • Jihuai Wu
    • 1
  • Zhang Lan
    • 1
  • Yibing Lin
    • 1
  • Qin Liu
    • 1
  • Bingcheng Lin
    • 1
  • Guozhang Liu
    • 1
  1. 1.Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical ChemistryHuaqiao UniversityXiamenPeople’s Republic of China

Personalised recommendations