Advertisement

Dielectric properties of La/Zr codoped Ba0.67Sr0.33TiO3 ceramics prepared from citrate–nitrate combustion derived powders

  • Zunping Xu
  • Hua Qiang
  • Chunlin Song
  • Yi Chen
Article

Abstract

La/Zr codoped Ba0.67Sr0.33TiO3 (BST) ceramics were fabricated via citrate–nitrate combustion derived powders, and the microstructure and dielectric properties of BST ceramics were investigated. All ceramic samples show a pure perovskite structure. The dielectric constant and loss decrease with increasing Zr content. The additions effectively suppress the grain growth of BST ceramics. It is found that the temperature-permittivity characteristics for codoped BST ceramics could be controlled using various doping content.

Keywords

Spark Plasma Sinter Ceramic Sample Barium Strontium Titanate Barium Zirconate Applied Direct Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Fundamental Research Funds for the Central Universities (XDJK2013C055) and (SWU113057).

References

  1. 1.
    A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, N. Setter, J. Electroceram. 11, 5 (2003)CrossRefGoogle Scholar
  2. 2.
    A. Kozyrev, A. Ivanov, T. Samoilova, O. Soldatenkov, J. Appl. Phys. 88, 5334 (2000)CrossRefGoogle Scholar
  3. 3.
    M.W. Cole, P.C. Joshi, M.H. Ervin, J. Appl. Phys. 89, 6336 (2001)CrossRefGoogle Scholar
  4. 4.
    W. Hu, C. Yang, W. Zhang, J. Mater. Sci.: Mater. Electron. 19, 1197 (2008)Google Scholar
  5. 5.
    X. Wang, R. Huang, Y. Zhao, H. Zhou, Z. Jia, J. Alloys Compd. 533, 25 (2012)CrossRefGoogle Scholar
  6. 6.
    R. Rani, S. Singh, J.K. Juneja, K.K. Raina, Ceram. Intell. 37, 3755 (2011)CrossRefGoogle Scholar
  7. 7.
    Z.P. Xu, H. Qiang, Y. Chen, C.Y. Nie, Ceram. Intell. 40, 4617 (2014)CrossRefGoogle Scholar
  8. 8.
    C. Liu, P. Liu, G.G. Yao, X.B. Bian, Mater. Res. Bull. 46, 1510 (2011)CrossRefGoogle Scholar
  9. 9.
    R.H. Liang, X.L. Dong, Y. Chen, F. Cao, Y.L. Wang, Mater. Chem. Phys. 95, 222 (2006)CrossRefGoogle Scholar
  10. 10.
    C. Shen, Q.F. Liu, Q. Liu, Mater. Lett. 58, 2302 (2004)CrossRefGoogle Scholar
  11. 11.
    C.L. Mao, X.L. Dong, T. Zeng, Mater. Res. Bull. 42, 1602 (2007)CrossRefGoogle Scholar
  12. 12.
    Q. Xu, X.F. Zhang, Y.H. Huang, J. Alloys Compd. 485, L16 (2009)CrossRefGoogle Scholar
  13. 13.
    B.L. Cheng, C. Weng, S.Y. Wang, H.B. Lu, J. Eur. Ceram. Soc. 25, 2295 (2005)CrossRefGoogle Scholar
  14. 14.
    M. Kumar, A. Garg, R. Kumar, M.C. Bhatnagar, Phys. B 403, 1819 (2008)CrossRefGoogle Scholar
  15. 15.
    Y.S. Jung, E.S. Na, U. Paik, J. Lee, L. Kim, Mater. Res. Bull. 37, 1633 (2002)CrossRefGoogle Scholar
  16. 16.
    D. Hennings, H. Schell, G. Simon, J. Am. Ceram. Soc. 65, 539 (1982)CrossRefGoogle Scholar
  17. 17.
    D. Ling, G.Y. Xu, S. Cai, J. Optelectron. Adv. Mater. 7, 2737 (2005)Google Scholar
  18. 18.
    J. Yoo, B. Seo, Ferroelectrics 425, 106 (2011)CrossRefGoogle Scholar
  19. 19.
    X.J. Chou, J.W. Zhai, X. Yao, Appl. Phys. Lett. 91, 122908 (2007)CrossRefGoogle Scholar
  20. 20.
    S.M. Rhim, S.K. Hong, H.J. Bak, O.K. Kim, J. Am. Ceram. Soc. 83, 1145 (2000)CrossRefGoogle Scholar
  21. 21.
    C. Liu, P. Liu, J. Alloys Compd. 584, 114 (2014)CrossRefGoogle Scholar
  22. 22.
    J. Zhang, J. Zhai, X. Chou, X. Yao, Mater. Chem. Phys. 111, 409 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of Materials and EnergySouthwest UniversityChongqingChina
  2. 2.Chongqing College of Humanities, Science and TechnologyChongqingChina

Personalised recommendations