Low-temperature synthesis of KTa0.55Nb0.45O3 powders and thin films via metal-organic solution

  • Xu-Ping Wang
  • Bing Liu
  • Yuan-Yuan Zhang
  • Xian-Shun Lv
  • Yu-Guo Yang


Potassium tantalite niobate powders and thin films were synthesized via metal-organic solution. The synthesized powders and thin films have a tetragonal phase with the perovskite structure. The powders show a cubic shape with sizes in the range of 120–230 nm. The emission spectrum of powders shows emissions peaked at 413, 451 and 468 nm, related to the electron-hole recombination of localized exciton Ta4+–O1− and Nb4+–O1− in a regular octahedron (TaO6 and NbO6). The polarization-electric field hysteresis loop of thin films is rectangular. The current–voltage characteristic of thin films shows a feature of linear to nonlinear transition, which is related to the space-charge-controlled mode of electrical conduction in solids.


Ethoxide Nonlinear Transition Pure Alcohol Localize Exciton Pulse Laser Deposition Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported financially by the National Science Foundation of China (Grant Nos. 51102158 and 51202135), and Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (Grant No. BS2010CL042).


  1. 1.
    Q. Guan, J. Wang, Y. Lian, C. Yang, P. Ye, Appl. Phys. Lett. 63, 2186 (1993)CrossRefGoogle Scholar
  2. 2.
    S. Yagi, NTT Tech. Rev. 7(12), 1 (2009)Google Scholar
  3. 3.
    R. Ohta, J. Zushi, T. Ariizumi, S. Kojima, Appl. Phys. Lett. 98, 092909 (2011)CrossRefGoogle Scholar
  4. 4.
    K. Nakamura, J. Miyazu, M. Sasaura, K. Fujiura, Appl. Phys. Lett. 89, 131115 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Toyoda, K. Fujiura, M. Sasaura, K. Enbustu, A. Tate, M. Shimokozono, H. Fushimi, T. Imai, K. Manabe, T. Matsuura, T. Kurihara, S.C.J. Lee, H. de Waardt, Electron. Lett. 40, 830 (2004)CrossRefGoogle Scholar
  6. 6.
    W.R. Wilcox, L.D. Fullmer, J. Am. Ceram. Soc. 49, 415 (1966)CrossRefGoogle Scholar
  7. 7.
    K. Yoshikawa, T. Asaka, M. Higuchi, Y. Azuma, K. Katayama, Ceram. Int. 34, 609 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Swain, P. Kumar, D.K. Agrawal, Sonia, Ceram. Int. 39, 3205 (2013)CrossRefGoogle Scholar
  9. 9.
    C.J. Lu, A.X. Kuang, J. Mater. Sci. 32, 4421 (1997)CrossRefGoogle Scholar
  10. 10.
    K. Zheng, D. Zhang, Z. Zhong, F. Yang, X. Han, Appl. Surf. Sci. 256, 1317 (2009)CrossRefGoogle Scholar
  11. 11.
    H. Gu, K. Zhu, J. Qiu, Y. Cao, H. Ji, Adv. Powder Technol. 23, 558 (2012)CrossRefGoogle Scholar
  12. 12.
    Y. Hu, H. Gu, Z. Hu, W. Di, Y. Yuan, J. You, W. Cao, Y. Wang, H.L.W. Chan, Cryst. Growth Des. 8, 832 (2008)CrossRefGoogle Scholar
  13. 13.
    Y. Hu, H. Gu, Z. Hu, H. Wang, J. Colloid Interface Sci. 310, 292 (2007)CrossRefGoogle Scholar
  14. 14.
    H.-J. Bae, D.P. Norton, Appl. Phys. A 81, 1657 (2005)CrossRefGoogle Scholar
  15. 15.
    W. Yang, Z. Zhou, B. Yang, Y. Jiang, Y. Pei, H. Sun, Y. Wang, Appl. Surf. Sci. 258, 3986 (2012)CrossRefGoogle Scholar
  16. 16.
    A.X. Kuang, C.J. Lu, G.Y. Huang, S.M. Wang, J. Cryst. Growth 149, 80 (1995)CrossRefGoogle Scholar
  17. 17.
    S. Wang, T. Zhon, L. Wang, A. Kuang, Ferroelectrics 195, 259 (1997)CrossRefGoogle Scholar
  18. 18.
    V. Železnỳ, J. Buršik, P. Vanek, Ferroelectrics 318, 23 (2005)CrossRefGoogle Scholar
  19. 19.
    S. Yilmaz, T. Venkatesan, R. G-Multhaupt, Appl. Phys. Lett. 58, 2479 (1991)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, Z. Wang, H. Xu, D. Li, J. Alloy. Compd. 484, 230 (2009)CrossRefGoogle Scholar
  21. 21.
    H. Xu, L. Zhen, Y. Wang, Z. Wang, J. Alloy. Compd. 489, 136 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Yang, X. Wang, B. Liu, Surf. Interface Anal. 16, 109 (2014)CrossRefGoogle Scholar
  23. 23.
    D.C. Bradley, in Advances in Inorganic Chemistry and Ratio Chemistry, (Academic Press, New York, 1972), p. 264Google Scholar
  24. 24.
    Z.L. Wang, J. Phys. Chem. B 104, 1153 (2000)CrossRefGoogle Scholar
  25. 25.
    X. Li, H. Zhang, S.J. Li, Y. Xiu, M.Y. Zhan, J. Alloys Compd. 190, 287 (1993)CrossRefGoogle Scholar
  26. 26.
    E.R. Leite, L.P.S. Santos, N.L.V. Carreno, E. Longo, C.A. Paskocimas, J.A. Varela, F. Lanciotti, C.E.M. Campos, P.S. Pizani, Appl. Phys. Lett. 78, 2148 (2001)CrossRefGoogle Scholar
  27. 27.
    H. Liu, R.C. Powell, L.A. Boatner, J. Appl. Phys. 70, 20 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xu-Ping Wang
    • 1
  • Bing Liu
    • 1
  • Yuan-Yuan Zhang
    • 1
  • Xian-Shun Lv
    • 1
  • Yu-Guo Yang
    • 1
  1. 1.New Materials Research InstituteShandong Academy of SciencesJinanChina

Personalised recommendations