Enhanced optoelectronics properties of europium(III) complexes with β-diketone and nitrogen heterocyclic ligands

  • Manju Bala
  • Satish Kumar
  • Priti Boora
  • V. B. Taxak
  • Avni Khatkar
  • S. P. Khatkar


Preparation and photoluminescence behavior of six new europium complexes with β-diketone 1-(2-hydroxy phenyl)-3-phenylpropane-1,3-dione (HPPP) and bathophenanthroline (batho), 2,2′-bipyridyl (bipy), 2,2′-biquinoline (biq), neocuproin (neo) and 1,10-phenanthroline (phen) are reported in solid state. The ligand (HPPP) and complexes Eu(HPPP)3·H2O (1), Eu(HPPP)3·phen (2), Eu(HPPP)3·batho (3), Eu(HPPP)3·bipy (4), Eu(HPPP)3·biq (5) and Eu(HPPP)3·neo (6) were characterized by means of elemental analysis, infrared spectroscopy, proton nuclear magnetic resonance (1H-NMR). The optical properties, thermal stability and crystalline nature were investigated by photoluminescence spectroscopy, thermogravimetric analysis and XRD respectively. The emission spectra show narrow intense emission band of central europium (III) metal ion that arise from the high intense 5D0 → 7F0 transition. The introduction of ancillary ligands like batho, bipy, biq, neo, phen enlarged the π-conjugation system in complexes as a result higher luminescence intensity, longer life time (τ) and higher quantum efficiency (η) observed in europium ternary complexes in comparison to Eu(HPPP)3·H2O (1). Based on the emission spectra, the luminescence decay curve was measured which indicated that the transfer of energy from HPPP ligand to the europium metal is more efficient in complexes 26 than complex 1.


Phen Bipy Ancillary Ligand Europium Complex Luminescence Decay Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support for this work from Council of Scientific and Industrial Research (CSIR) of India (09/382 (0155)/2012-EMR-I) is highly acknowledged.


  1. 1.
    S.I. Weissman, J. Chem. Phys. 10, 214 (1942)CrossRefGoogle Scholar
  2. 2.
    S.G. Liu, P. He, H.H. Wang, J.X. Shi, M.L. Gong, Mater. Chem. Phys. 116, 654 (2009)CrossRefGoogle Scholar
  3. 3.
    S.G. Liu, M.L. Gong, S. Wang, X.M. Tan, Spectrochim. Acta Part A 74, 731 (2009)CrossRefGoogle Scholar
  4. 4.
    S.G. Liu, P. He, H.H. Wang, J.X. Shi, M.L. Gong, J. Lumin. 130, 855 (2010)CrossRefGoogle Scholar
  5. 5.
    H.H. Wang, P. He, H.G. Yan, M.L. Gong, Sens. Actuators B 156, 6 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Tsukube, M. Hosokubo, M. Wada, S. Shinoda, H. Tamiaki, Inorg. Chem. 40, 582 (2001)Google Scholar
  7. 7.
    Y.J. Fu, T.K.S. Wong, Y.K. Yan, X. Hu, J. Alloys Compd. 358, 235 (2003)CrossRefGoogle Scholar
  8. 8.
    K. Kuriki, Y. Koike, Y. Okamoto, Chem. Rev. 102, 2347 (2002)CrossRefGoogle Scholar
  9. 9.
    M.R. Robinson, M.B. O’Regan, G.C. Bazan, Chem. Commun. 17, 1645 (2000)CrossRefGoogle Scholar
  10. 10.
    D. Parker, P.K. Senanayake, J.A.G. Williams, J. Chem. Soc. Perkin Trans. 2, 2129 (1998)CrossRefGoogle Scholar
  11. 11.
    C.W. Tang, S.A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987)CrossRefGoogle Scholar
  12. 12.
    J. Kido, K. Nagai, Y. Okamoto, J. Alloys Compd. 192, 30 (1993)CrossRefGoogle Scholar
  13. 13.
    N. Takada, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys. 33, 863 (1994)CrossRefGoogle Scholar
  14. 14.
    B.S. Panigrahi, Spectrochim. Acta Part A 56(7), 1337 (2000)CrossRefGoogle Scholar
  15. 15.
    R. Kumar, J.K. Makrandi, I. Singh, S.P. Khatkar, J. Lumin. 128, 1297 (2008)CrossRefGoogle Scholar
  16. 16.
    X.H. Zhao, K.L. Huang, F.P. Jiao, Z.J. Li, X.H. Peng, Rare Met. 25(2), 144 (2006)CrossRefGoogle Scholar
  17. 17.
    K. Binnemans, K.A. Gschneidner Jr, J.C.G. Bunzil, Rare-Earth Beta-Diketonates, in Handbook on the physics and chemistry of Rare Earths chapter 225, ed. by V.K. Pecharsky (Elsevier, Amsterdam, 2005)Google Scholar
  18. 18.
    Y.F. Yuan, T. Cadinaels, K. Lunstroot, K. Van Hecke, L. Van Meervelt, C. GÖlrller-Walrand, K. Binnemans, P. Nockemann, Inorg. Chem. 46, 5302 (2007)CrossRefGoogle Scholar
  19. 19.
    F.F. Chen, Z.Q. Bian, Z.W. Liu, D.B. Nie, Z.Q. Chen, C.H. Huang, Inorg. Chem. 47, 2507 (2008)CrossRefGoogle Scholar
  20. 20.
    A. Kumar, J.K. Makrandi, Heteroletters 2(3), 271 (2012)Google Scholar
  21. 21.
    D. Wang, C. Zheng, L. Fan, J. Zheng, X. Wei, Synt. Met. 162, 2063 (2012)CrossRefGoogle Scholar
  22. 22.
    P.N. Verma, H.D. Juneja, Int. J. Chemtech. Res. 4(3), 1000 (2012)Google Scholar
  23. 23.
    D. Wang, Y. Pi, C. Zheng, L. Fan, Y. Hu, X. Wei, J. Alloy. Compd. 574, 54 (2013)CrossRefGoogle Scholar
  24. 24.
    V. Divya, S. Biju, R.L. Varma, M.L.P. Reddy, J. Mater. Chem. 20, 5220 (2010)CrossRefGoogle Scholar
  25. 25.
    H.F. Li, P.F. Yan, P. Chen, Y. Wang, H. Xu, G.M. Li, Dalton Trans. 41, 900 (2012)CrossRefGoogle Scholar
  26. 26.
    N. Sabbatini, M. Guardigli, J.M. Lehn, Coord. Chem. Rev. 123, 201 (1993)CrossRefGoogle Scholar
  27. 27.
    H.F. Brito, O.L. Malta, L.R. Souza, J.F.S. Menezes, C.A.A. Carvalho, J. Non-Cryst. Solid 247, 129 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Manju Bala
    • 1
  • Satish Kumar
    • 1
  • Priti Boora
    • 1
  • V. B. Taxak
    • 1
  • Avni Khatkar
    • 1
  • S. P. Khatkar
    • 1
  1. 1.Department of ChemistryMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations