Synthesis and luminescent properties of Tb3+ activated AWO4 based (A = Ca and Sr) efficient green emitting phosphors



Optically efficient terbium activated alkaline earth metal tungstate nano phosphors (AWO4 [A = Ca, Sr]) with different doping concentrations have been prepared by mechanochemically assisted solid state metathesis reaction at room temperature for the first time. The prepared phosphors were characterized by the X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), Fourier transform Raman (FT-Raman) spectroscopy, photoluminescence and diffuse reflectance spectroscopy measurements. The XRD and Raman spectra results showed that the prepared powders present a scheelite-type tetragonal structure. FTIR spectra exhibited a high absorption band situated at around 850 cm−1, which was ascribed to the W–O antisymmetric stretching vibrations into the [WO4]2− tetrahedron groups and the SEM images reveal that the particle sizes were in the range of 20–60 nm. The excitation and the emission spectra were measured to characterize the luminescent properties of the phosphors. The excitation spectrum exhibits a charge transfer broad band along with some sharp peaks from the typical 4f–4f transitions of Tb3+. Under excitation of UV light, these AWO4:xTb3+ (A = Ca, Sr) phosphors showed a strong emission band centered at 545 nm (green) which corresponds to 5 D 4 → 7 F 5 transition of Tb3+. Analysis of the emission spectra with different Tb3+ concentrations revealed that the optimum dopant concentration for CaWO4:xTb3+ and SrWO4:xTb3+ phosphors are about 8 and 6 mol% of Tb3+. The green emission intensity of the solid state meta-thesis prepared CaWO4:0.08Tb3+ and SrWO4:0.06Tb3+ phosphors are 1.5 and 1.2 times greater than that of the commercial LaPO4:Ce, Tb green phosphor. All properties show that AWO4:Tb3+ (A = Ca, Sr) is a very appropriate green-emitting phosphor for fluorescent lamp applications.


Scheelite CaWO4 LaPO4 SrWO4 TbCl3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Liao, D. Zhou, H. You, H.R. Wen, Q. Zhou, B. Yang, Optik 124(12), 1362–1365 (2013)CrossRefGoogle Scholar
  2. 2.
    K.H. Butler, Fluorescent Lamp Phosphors (The Pennsylvania State University Press, University Park, 1980)Google Scholar
  3. 3.
    J.F. Waymouth, Electrical Discharge Lamps (MIT Press, Cambridge, 1978)Google Scholar
  4. 4.
    T. Welker, J. Lumin. 48–49, 49–56 (1991)CrossRefGoogle Scholar
  5. 5.
    T. Justel, H. Nikol, C. Ronda, Angew. Chem. Int. Ed. 37, 3250 (1998)CrossRefGoogle Scholar
  6. 6.
    G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)CrossRefGoogle Scholar
  7. 7.
    M. Koedam, J.J. Opstelten, Lighting Res. Tech 3, 205 (1971)Google Scholar
  8. 8.
    Y.D. Jiang, Z.L. Wang, F. Zhang, H.G. Paris, C.J. Summers, J. Mater. Res. 13, 2197 (1998)Google Scholar
  9. 9.
    X. Hu, S. Yan, L. Ma, G. Wan, J. Hu, Powder Technol. 192(1), 27–32 (2009)CrossRefGoogle Scholar
  10. 10.
    K.G. Chaudhari, Y.S. Patil, B. Subba Rao, K.V.R. Murthy, Adv. Appl. Sci. Res. 2(5), 130–135 (2011)Google Scholar
  11. 11.
    S.W. Ko, D. Shin, J. Electroceram. 23, 410–414 (2009)CrossRefGoogle Scholar
  12. 12.
    N. Hashimoto, Y. Takada, K. Sato, S. Ibuki, J. Lumin. 48–49, 893 (1991)CrossRefGoogle Scholar
  13. 13.
    C. Guo, H. Jing, T. Li, RSC Adv. 2, 2119–2122 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Yu, G. Wang, J. Liu, Mater. Sci: Mater. Electron. 24, 3041–3048 (2013)Google Scholar
  15. 15.
    Y. Chen, J. Wang, X.G. Zhang, G.G. Zhang, M.L. Gong, Q. Su, Sens. Actuators B 148, 259–263 (2010)CrossRefGoogle Scholar
  16. 16.
    G. Jia, C. Tu, A. Brenier et al., Appl. Phys. B Lasers Optics 81, 627 (2005)CrossRefGoogle Scholar
  17. 17.
    J. Liu, J. Ma, B. Lin, Y. Ren, X. Jiang, J. Tao, X. Zhu, Ceram. Int. 34, 1557–1560 (2008)CrossRefGoogle Scholar
  18. 18.
    G.X. Zhang, R.P. Jia, Q.S. Wu, Mater. Sci. Eng. B 128, 254–259 (2006)CrossRefGoogle Scholar
  19. 19.
    T. Thongtem, S. Kungwankunakorn, B. Kuntalue, A. Phuruangratc, S. Thongtem, J Alloys Compd. 506, 475–481 (2010)CrossRefGoogle Scholar
  20. 20.
    J.C. Sczancoski, L.S. Cavalcante, M.R. Joya, J.W.M. Espinosa, P.S. Pizani, J.A. Varela, E. Longo, J. Colloid Interface Sci. 330, 227–236 (2009)CrossRefGoogle Scholar
  21. 21.
    X. Jiang, J. Ma, Y. Yao, Y. Sun, Z. Liu, Y. Ren, J. Liu, B. Lin, Ceram. Int. 35, 3525–3528 (2009)CrossRefGoogle Scholar
  22. 22.
    C. Li, C. Lin, X. Liu, J. Lin, J. Nanosci. Nanotechnol. 8(3), 1183–1190 (2008)Google Scholar
  23. 23.
    J. Liao, B. Qiu, H. Wen, J. Chen, W. You, Mater. Res. Bull. 44, 1863–1866 (2009)CrossRefGoogle Scholar
  24. 24.
    J. Liao, B. Qiu, H. Wen, W. You, Opt. Mater. 31, 1513–1516 (2009)CrossRefGoogle Scholar
  25. 25.
    Y. Tian, B. Chen, H. Yu, R. Hua, X. Li, J. Sun, L. Cheng, H. Zhong, J. Zhang, Y. Zheng, T. Yu, L. Huang, J. Colloid Interface Sci. 360(2), 586–592 (2011)CrossRefGoogle Scholar
  26. 26.
    Z. Wang, G. Lil, Z. Quan, D. Kong, X. Liu, M. Yu, J. Lin, J. Nanosci. Nanotechnol. 7(2), 602–609 (2007)Google Scholar
  27. 27.
    Z. Hou, C. Li, J. Yang, H. Lian, P. Yang, R. Chai, Z. Cheng, J. Lin, J. Mater. Chem. 19, 2737–2746 (2009)CrossRefGoogle Scholar
  28. 28.
    E. Cavalli, P. Boutinaud, R. Mahiou, M. Bettinelli, P. Dorenbos, Inorg. Chem. 49(11), 4916–4921 (2010)CrossRefGoogle Scholar
  29. 29.
    C. Du, F. Lang, Y. Su, Z. Liu, J. Colloid Interface Sci. 394, 94–99 (2013)CrossRefGoogle Scholar
  30. 30.
    Y. Chen, H.K. Yang, S.W. Park, B.K. Moon, B.C. Choi, J.H. Jeong, K.H. Kim, J. Alloys Compd. 511(1), 123–128 (2012)CrossRefGoogle Scholar
  31. 31.
    F.-W. Kang, Y.-H. Hu, L. Chen, X.-J. Wang, H.-Y. Wu, Z.-F. Mu, J. Lumin. 135, 113–119 (2013)CrossRefGoogle Scholar
  32. 32.
    Z.H. Ju, R.P. Wei, J.X. Ma, C.R. Pang, W.S. Liu, J. Alloys Compd. 507(1), 133–136 (2010)CrossRefGoogle Scholar
  33. 33.
    B.S. Barros, A.C. De Lima, Z.R. Da Silva, D.M.A. Melo, S. Alves-Jr, J. Phys. Chem. Solids 73, 635–640 (2012)CrossRefGoogle Scholar
  34. 34.
    Y. Zheng, J. Lin, Q. Wang, Photochem. Photobiol. Sci. 11, 1567–1574 (2012)CrossRefGoogle Scholar
  35. 35.
    L.-D. Feng, X.-B. Chen, C.-J. Mao, Mater. Lett. 64(22), 2420–2423 (2010)CrossRefGoogle Scholar
  36. 36.
    A. John Peter, I.B. Shameem Banu, Samuel Thirumalai, J. Paul David, J. Mater. Sci. Mater. Electron 24, 4503–4509 (2013)CrossRefGoogle Scholar
  37. 37.
    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, London, 1978)Google Scholar
  38. 38.
    S. Shionoya, W.M. Yen, Phosphor Handbook (CRC Press, Boca Raton, 1999)Google Scholar
  39. 39.
    N. Du, H. Zhang, X.Y. Ma, D.S. Li, D.R. Yang, Mater. Lett. 63, 1180 (2009)CrossRefGoogle Scholar
  40. 40.
    S. Ekambaram, K.C. Patil, J. Alloys Compd. 248, 7 (1997)CrossRefGoogle Scholar
  41. 41.
    R.R. Khanna, E.R. Lippincott, Spectrochim. Acta A 24, 905 (1968)CrossRefGoogle Scholar
  42. 42.
    S.P.S. Porto, J.F. Scott, Phys. Rev. 157, 716 (1967)CrossRefGoogle Scholar
  43. 43.
    A. Kato, S. Oishi, T. Shishido, M. Yamazaki, S. Lida, J. Phys. Chem. Solids 66, 2079 (2005)CrossRefGoogle Scholar
  44. 44.
    L.J. Burcham, I.E. Wachs, Spectrochim Acta A. 54, 1355–1368 (1998)CrossRefGoogle Scholar
  45. 45.
    A.B. Campos, A.Z. Simoes, E. Longo, J.A. Varela, V.M. Longo, A.T. De Figueiredo, F.S. De Vicente, A.C. Hernandes, Appl. Phys. Lett. 91, 051923 (2007)CrossRefGoogle Scholar
  46. 46.
    S.P.S. Porto, J.F. Scott, Phys. Rev. 157(3), 716–719 (1967)CrossRefGoogle Scholar
  47. 47.
    L.R. Singh, R.S. Ningthoujam, V. Sudarsan, I. Srivastava, S.D. Singh, G.K. Dey, S.K. Kulshreshtha, Nanotechnology 19, 055201 (2008)CrossRefGoogle Scholar
  48. 48.
    Haque MdM, D.K. Kim, Mater. Lett. 63, 793 (2009)CrossRefGoogle Scholar
  49. 49.
    M.A.M.A. Maurera, A.G. Souza, L.E.B. Soledade, F.M. Pontes, E. Longo, E.R. Leite, J.A. Varela, Mater. Lett. 58, 727–732 (2004)CrossRefGoogle Scholar
  50. 50.
    M. Itoh, M. Fujita, Phys. Rev. B 62, 12825–12830 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsSt. Anne’s College of Engineering and TechnologyPanrutiIndia
  2. 2.Department of PhysicsB. S. Abdur Rahman UniversityVandalur, ChennaiIndia

Personalised recommendations