Bismuth sodium titanate based lead-free ceramic/epoxy 1–3 composites: fabrication and electromechanical properties

  • Feng Li
  • Ruzhong Zuo


The 1–3 piezocomposites based on 0.96Bi0.5(Na0.84K0.16)0.5TiO3–0.04SrTiO3 (BNKT–ST) were fabricated by a modified dice-fill method. Electro-mechanical properties of the composites as a function of the ceramic volume fraction (v) were measured and compared with theoretical values as well as with those of monolithic ceramics. The as-prepared piezocomposite with v = 0.276 showed a clear single thickness mode with a relatively high resonance frequency of more than 2 MHz, together with a relatively high piezoelectric strain constant (d 33 ~ 104 pC/N), a high thickness coupling coefficient (k t  ~ 0.547), low acoustic impedance (Z ~ 9 Mrayls) and a large piezoelectric voltage coefficient (g 33 ~ 91.5 × 10−3 m2/C). From the practical application point of view, these promising results indicate that the BNKT–ST ceramic/epoxy 1–3 composite has great potential to be used in biomedical ultrasonic transducers as well as nondestructive evaluations.


Dielectric Permittivity Acoustic Impedance Electromechanical Coupling Coefficient Thickness Mode High Resonance Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the National Natural Science Foundation of China (Grant No. 51272060) is gratefully acknowledged.


  1. 1.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971), pp. 135–171Google Scholar
  2. 2.
    G.H. Haertling, J. Am. Ceram. Soc. 82(4), 797 (1999)CrossRefGoogle Scholar
  3. 3.
    J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, J. Am. Ceram. Soc. 92(6), 1153 (2009)CrossRefGoogle Scholar
  4. 4.
    T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111 (2007)CrossRefGoogle Scholar
  5. 5.
    Y.H. Zhen, J.F. Li, J. Appl. Phys. 103, 084119 (2008)CrossRefGoogle Scholar
  6. 6.
    R. J. Meyer, J. P. Lopath, S. Yoshikawa, T. R. Shrout, IEEE Ultrasonics Symposium 2, 915 (1997)Google Scholar
  7. 7.
    Y. Saito, H. Takao, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamuna, Nature 432, 84 (2004)CrossRefGoogle Scholar
  8. 8.
    E. Cross, Nature 432, 24 (2004)CrossRefGoogle Scholar
  9. 9.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State (Engl. Transl.) 2(11), 2651 (1961)Google Scholar
  10. 10.
    C.F. Buhrer, J. Chem. Phys. 36, 798 (1962)CrossRefGoogle Scholar
  11. 11.
    J. Suchanicz, K. Roleder, A. Kania, J. Handerek, Ferroelectrics 77, 107 (1988)CrossRefGoogle Scholar
  12. 12.
    Y.M. Li, W. Chen, J. Zhou, Q. Xu, H.J. Sun, R.X. Xu, Mater. Sci. Eng. B 112, 5 (2004)CrossRefGoogle Scholar
  13. 13.
    L.J. Liu, H.Q. Fan, S.M. Ke, X.L. Chen, J. Alloy Compd. 458, 504 (2008)CrossRefGoogle Scholar
  14. 14.
    C.H. Wang, J. Ceram. Soc. Jpn. 116(5), 632 (2008)CrossRefGoogle Scholar
  15. 15.
    N.M. Hagh, M. Allahverdi, A. Safari, IEEE International Ultrasonics, Ferroelectrics and Frequency Control Joint 50th Anniversary Conference (2004), pp. 246–249Google Scholar
  16. 16.
    R.E. Newham, D.P. Skinner, L.E. Cross, Mater. Res. Bull. 13, 525 (1978)CrossRefGoogle Scholar
  17. 17.
    D.P. Skinner, R.E. Newnham, L.E. Cross, Mater. Res. Bull. 13, 599 (1978)CrossRefGoogle Scholar
  18. 18.
    R.Y. Ting, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 41, 64 (1992)Google Scholar
  19. 19.
    A. Safari, V.F. Janas, A. Bandyopadhyay, Ceram. Process. 43, 2849 (1997)Google Scholar
  20. 20.
    D. Zhou, K.H. Lam, Y. Chen, Q.H. Zhang, Y.C. Chiu, H.S. Luo, J.Y. Dai, H.L.W. Chan, Sens. Actuat. A Phys. 182, 95 (2012)CrossRefGoogle Scholar
  21. 21.
    K.H. Lam, M.S. Guo, D.M. Lin, K.W. Kwok, H.L.W. Chan, J. Mater. Sci. 43, 1677 (2008)CrossRefGoogle Scholar
  22. 22.
    B. Ma, R.Z. Zuo, J.Y. Yu, Y. Ran, Y. Wang, H.W.L. Chan, J. Mater. Sci. Mater. Electron. 22, 1697 (2011)CrossRefGoogle Scholar
  23. 23.
    K.C. Cheng, H.L.W. Chan, C.L. Choy, Q.R. Yin, H.S. Luo, Z.W. Yin, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1177 (2003)CrossRefGoogle Scholar
  24. 24.
    Y.H. Zhen, J.F. Li, H.L. Zhang, J. Electroceram. 21, 410 (2008)CrossRefGoogle Scholar
  25. 25.
    S.H. Choy, W.K. Li, H.K. Li, K.H. Lam, H.L.W. Chan, J. Appl. Phys. 102, 114111 (2007)CrossRefGoogle Scholar
  26. 26.
    J. Yoo, J. Hong, H. Lee, Y. Jeong, B. Lee, H. Song, J. Kwon, Sens. Actuat. A Phys. 126, 41 (2006)CrossRefGoogle Scholar
  27. 27.
    H.L.W. Chan, J. Unsworth, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 434 (1989)CrossRefGoogle Scholar
  28. 28.
    F.F. Wang, C.J. He, Y.X. Tang, X.Y. Zhao, H.S. Luo, Mater. Chem. Phys. 105, 273 (2007)CrossRefGoogle Scholar
  29. 29.
    Z.Y. Shen, J.F. Li, R.M. Chen, Q.F. Zhou, K.K. Shung, J. Am. Ceram. Soc. 94(5), 1346 (2011)CrossRefGoogle Scholar
  30. 30.
    S.T.F. Lee, K.H. Lam, X.M. Zhang, H.L.W. Chan, Adv. Mater. Res. 254, 90 (2011)CrossRefGoogle Scholar
  31. 31.
    W.A. Smith, B.A. Auld, Ferroelectrics 38(1), 40 (1991)Google Scholar
  32. 32.
    W. A. Smith, A. A. Shaulov, B. M. Singer, Ultrasonics Symposium 539 (1984)Google Scholar
  33. 33.
    W. Wang, S.W. Or, Q.W. Yue, Y.Y. Zhang, J. Jiao, B. Ren, D. Lin, C.M. Leung, X.Y. Zhao, H.S. Luo, Sens. Actuat. A Phys. 192, 69 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Electro Ceramics and Devices, School of Materials Science and EngineeringHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations