Effect of Zr4+ and Si4+ substitution on the luminescence properties of CaMoO4:Eu3+ red phosphors

  • T. Linda Francis
  • P. Prabhakar Rao
  • Mariyam Thomas
  • S. K. Mahesh
  • V. R. Reshmi


A series of intense red emitting phosphors, Ca0.8−x Zr x Mo1−x Si x O4:0.2Eu3+ (x = 0.025, 0.05, 0.075, 0.1) that could be effectively excited in the UV region was prepared by conventional high temperature solid state reaction route. Structural, morphological and photoluminescence properties of the prepared samples were studied in detail. The incorporation of Zr4+ and Si4+ ions in CaMoO4 lattice maintained the powellite crystal structure. Luminescence properties were optimized for 7.5 mol% of Zr4+ and Si4+ concentration. Emission intensities improved more than twice in comparison with CaMoO4:Eu3+. Life times of the prepared samples improved and the quantum efficiency enhanced to ~39 %. The improvement in emission intensity and quantum efficiency is explained in terms of the local distortion around the Eu3+ ions resulting in improved absorption in the UV region. The CIE color co-ordinates of the red emission were in agreement with the values of the standard red phosphors providing potentiality to be used in phosphor converted (pc) white LEDs.


Emission Intensity Quantum Efficiency CaMoO4 Magnetic Dipole Transition High Temperature Solid State Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors, Linda Francis T., would like to acknowledge the Council of Scientific Industrial Research (CSIR), Government of India, for the financial support towards a senior research fellowship.


  1. 1.
    T. Justel, H. Nikol, C. Ronda, Angew. Chem. Int. Ed. 37, 3084 (1998)CrossRefGoogle Scholar
  2. 2.
    J.M. Phillips, M.E. Coltrin, M. Crawford, A.J. Fischer, M.R. Krames, R.M. Mach, G. Mueller, Y. Ohno, L. Rohwer, J. Simmons, J. Tsao, Laser Photonics Rev. 1, 307 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Thomas, P. Prabhakar Rao, M. Deepa, M.R. Chandran, P. Koshy, J. Solid State Chem. 182, 203 (2009)CrossRefGoogle Scholar
  4. 4.
    G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)CrossRefGoogle Scholar
  5. 5.
    Y.S. Hu, W.D. Zhuang, H.Q. Ye, D.H. Wang, S.S. Zhang, X.W. Huang, J. Alloys Compd. 390, 226 (2005)CrossRefGoogle Scholar
  6. 6.
    J. Liu, H. Lian, C. Shi, Opt. Mater. 29, 1591 (2007)CrossRefGoogle Scholar
  7. 7.
    A. Xie, X. Yuan, S. Hai, J. Wang, F. Wang, L. Li, J. Phys. D Appl. Phys. 42, 105107 (2009)CrossRefGoogle Scholar
  8. 8.
    F. Kang, Y. Hu, H. Wu, G. Ju, Z. Mu, N. Li, J. Rare Earths 29, 837 (2011)CrossRefGoogle Scholar
  9. 9.
    F. Lei, B. Yan, J. Solid State Chem. 181, 855 (2008)CrossRefGoogle Scholar
  10. 10.
    H. Wu, Y. Hu, W. Zhang, F. Kang, N. Li, G. Ju, J. Sol–Gel. Sci. Technol. 62, 227 (2012)CrossRefGoogle Scholar
  11. 11.
    F.A. Kroger, H.J. Vink, Physica 20, 950 (1954)CrossRefGoogle Scholar
  12. 12.
    S.K. Mahesh, P. Prabhakar Rao, M. Thomas, T.L. Francis, P. Koshy, Inorg. Chem. 52, 13304 (2013)CrossRefGoogle Scholar
  13. 13.
    P.M. Jaffe, J. Electrochem. Soc. 116, 629 (1969)CrossRefGoogle Scholar
  14. 14.
    Z. Ci, Y. Wang, J. Zhang, Y. Sun, Phys. B 403, 670 (2008)CrossRefGoogle Scholar
  15. 15.
    S.N. Achary, S.J. Patwe, M.D. Mathews, A.K. Tyagi, J. Phys. Chem. Solids 67, 774 (2006)CrossRefGoogle Scholar
  16. 16.
    R. Shannon, Acta Cryst. A 32, 51 (1976)CrossRefGoogle Scholar
  17. 17.
    Z.J. Zhang, H.H. Chen, X.X. Yang, J.T. Zhao, Mater. Sci. Eng. B 145, 34 (2007)CrossRefGoogle Scholar
  18. 18.
    G.S.R. Raju, E. Pavitra, Y.H. Ko, J.S. Yu, J. Mater. Chem. 22, 15562 (2012)CrossRefGoogle Scholar
  19. 19.
    G. Blasse, in Handbook on the Physics and Chemistry of Rare Earths, 4th edn., ed. by K.A. Gschneidner, Jr., E. LeRoy (Elsevier, Netherlands, 1979), p. 244Google Scholar
  20. 20.
    Y. Su, L. Li, G. Li, Chem. Mater. 20, 6060 (2008)CrossRefGoogle Scholar
  21. 21.
    C. Peng, H. Zhang, J. Yu, Q. Meng, L. Fu, H. Li, L. Sun, X. Guo, J. Phys. Chem. B 109, 15278 (2005)CrossRefGoogle Scholar
  22. 22.
    C.R. Paula, S. Santos, H.I.S. Nogueira, V. Felix, M.G.B. Drew, R.A. Sa’ Ferreira, T. Trindade, L.D. Carlos, Chem. Mater. 15, 100 (2003)CrossRefGoogle Scholar
  23. 23.
    R.A. Sa’ Ferreira, L.D.Carlos, R.R. Goncalves, S.J.L. Ribeiro, V.Z. Bermudez, Chem. Mater. 13, 2991 (2001)Google Scholar
  24. 24.
    L.D. Carlos, Y. Messaddeq, H.F. Brito, R.A. Sa’ Ferreira, V.Z. Bermudez, S.J.L. Ribeiro, Adv. Mater. 12, 594 (2000)CrossRefGoogle Scholar
  25. 25.
    W.M. Yen, S. Shionoya, H. Yamamoto, Phosphor Handbook, 2nd edn. (Taylor and Francis, Florida, 2006), p. 35CrossRefGoogle Scholar
  26. 26.
    Z. Zhang, O.M. Kate, A.C.A. Delsing, M.J.H. Stevens, J. Zhao, P.H.L. Notten, P. Dorenbos, H.T. Hintzen, J. Mater. Chem. 22, 23871 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • T. Linda Francis
    • 1
  • P. Prabhakar Rao
    • 1
  • Mariyam Thomas
    • 2
  • S. K. Mahesh
    • 1
  • V. R. Reshmi
    • 1
  1. 1.Materials Science and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology (NIIST)TrivandrumIndia
  2. 2.Department of PhysicsSt. Therasa’s CollegeErnakulamIndia

Personalised recommendations