Influence of Mn doping on structural, electrical and magnetic properties of (0.90)BiFeO3–(0.10)BaTiO3 composite

  • Mohit Sahni
  • Naresh Kumar
  • Sushant Singh
  • Aashish Jha
  • S. Chaubey
  • Manoj Kumar
  • M. K. Sharma


Structural, electrical and magnetic properties of chemically synthesized polycrystalline Mn doped (0.90)BiFeO3–(0.10)BaTiO3 composites [(0.90)BiFe1−xMnxO3–(0.10)BaTiO3 (x = 0.0, 0.03, 0.05 and 0.10)] were studied. The dielectric constant was observed to decrease when frequency was increased from 20 Hz to 1 MHz and increased with the increase in temperature from 313 to 773 K. An interesting correlation between the antiferromagnetic Neel temperature (TN) of bismuth ferrite and temperature dependent dielectric constant was observed. The calculated values of activation energies were in the order of 0.25–0.74 eV (<1.0 eV) and decreases with an increase of Mn concentration. The variation of a.c. conductivity obeyed the Jonscher’s power law (σ ac  ∝ ω s ). The observed value of exponent‘s’ were in the range 0.09 < ‘s’ < 0.78 (<1.0) for all the sample at temperature ranging from 473 to 598 K. There was a systematic increase in the value of spontaneous magnetization on increasing Mn concentration.


Dielectric Loss BaTiO3 BiFeO3 Spontaneous Magnetization Bismuth Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



M.S is greatful to the Sharda University of India for providing financial support and leave for carrying out this work at Motilal Nehru National Institute of Technology Allahabad. N.K is thankful to Department of Science and Technology, Government of India for funding (SR/FTP/PS-04/2008) and director MNNIT for the support. N.K also acknowledges consistent support provided by the Director MNNIT Allahabad and Centre for Interdisciplinary Research (CIR) MNNIT Allahabad for the access of centered research facilities. M.K is thankful to National Facility installed in Magnetics & Advanced Ceramics Laboratory at IIT Delhi for magnetic measurements.


  1. 1.
    S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)CrossRefGoogle Scholar
  2. 2.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)CrossRefGoogle Scholar
  3. 3.
    J.W. Kim, D.C. Yoon, M.S. Jeon, D.W. Kang, J.W. Kim, H.S. Lee, Curr. Appl. Phys. 10, 1297 (2010)CrossRefGoogle Scholar
  4. 4.
    N. Nuraje, X. Dang, J. Qi, M.A. Alen, Y. Lei, A.M. Belcher, Adv. Mater. 24, 2885 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)CrossRefGoogle Scholar
  6. 6.
    G. J. Mac Dougall, H. M. Christen, W. Siemons, M. D. Biegalski, J. L. Zarestky, S. Liang, E. Dagotto, S. E. Nagler, Phys. Rev. B 85, 100406 (R) (2012)Google Scholar
  7. 7.
    J. Dho, X. Qi, H. Kim, J.L. MacManus-Driscoll, M.G. Blamire, Adv. Mater. 18, 1445 (2006)CrossRefGoogle Scholar
  8. 8.
    F. Kubel, H. Schmid, Acta Crystallogr. B 46, 698 (1990)CrossRefGoogle Scholar
  9. 9.
    P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. Solid State Phys. 13, 1931 (1980)CrossRefGoogle Scholar
  10. 10.
    F. Gao, Y. Yuan, F.K. Wang, Y.X. Chen, F. Chen, J.-M. Liu, F.Z. Ren, Appl. Phys. Lett. 89, 102506 (2006)CrossRefGoogle Scholar
  11. 11.
    Y. Du, X.Z. Cheng, X.S. Dou, J.D. Attard, L.X. Wang, J. Appl. Phys. 109, 073903 (2011)CrossRefGoogle Scholar
  12. 12.
    R. Mazumder, S.P. Devi, D. Bhattacharya, P. Choudhary, A. Sen, M. Raja, Appl. Phys. Lett. 91, 062510 (2007)CrossRefGoogle Scholar
  13. 13.
    L. Fang, J. Lui, S. Ju, F. Zheng, W. Dong, M. Shen, Appl. Phys. Lett. 242501 (2010)Google Scholar
  14. 14.
    J.S. Kim, C.I. Cheon, H.S. Shim, P.W. Jang, Jpn. J. Appl. Phys. 40, 5653 (2001)CrossRefGoogle Scholar
  15. 15.
    J.S. Kim, C.I. Cheon, C.H. Lee, P.W. Jang, J. Appl. Phys. 96, 468 (2004)CrossRefGoogle Scholar
  16. 16.
    F. Chang, N. Zhang, F. Yang, S. Wang, G. Song, J. Phys. D Appl. Phys. 40, 7799–7803 (2007)CrossRefGoogle Scholar
  17. 17.
    V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, M. Maglione, J. Appl. Phys. 103, 024105 (2008)CrossRefGoogle Scholar
  18. 18.
    M. Kumar, K.L. Yadav, Appl. Phys. Lett. 91, 112911 (2007)CrossRefGoogle Scholar
  19. 19.
    Y.H. Lin, Q. Jiang, Y. Wang, C.W. Nan, L. Chen, J. Yu, Appl. Phys. Lett. 90, 172507 (2007)CrossRefGoogle Scholar
  20. 20.
    R.D. Shannon, Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751 (1976)Google Scholar
  21. 21.
    C.F. Chung, J.P. Lin, J.M. Wu, Appl. Phys. Lett. 88, 242909 (2006)CrossRefGoogle Scholar
  22. 22.
    V.R. Palkar, C. Darshan, C. Kundaliya, S.K. Malik, J. Appl. Phys. 93, 4337–4339 (2003)CrossRefGoogle Scholar
  23. 23.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)CrossRefGoogle Scholar
  24. 24.
    Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, S.J. Zhang, T.R. Shrout, J. Appl. Phys. 103, 07E507 (2008)Google Scholar
  25. 25.
    X. Zhenga, Q. Xua, Z. Wenb, X. Langa, D. Wub, T. Qiua, M.X. Xua, J. Alloys Compd. 499, 108–112 (2010)CrossRefGoogle Scholar
  26. 26.
    X.J. Zhang, Y.J. Dai, W. Lu, W.L.H. Chan, B. Wu, X.D. Li, J. Phys. D Appl. Phys. 41, 235405 (2008)CrossRefGoogle Scholar
  27. 27.
    X.J. Zhang, Y.J. Dai, W.L.H. Chan, J. Appl. Phys. 107, 104105 (2010)CrossRefGoogle Scholar
  28. 28.
    C.G. Koops, Phys. Rev. 83(1), 121–124 (1951)CrossRefGoogle Scholar
  29. 29.
    A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Phys. Rev. Lett. 101, 247602 (2008)CrossRefGoogle Scholar
  30. 30.
    L. Benguigui, Solid State Commun. 11, 825 (1972)CrossRefGoogle Scholar
  31. 31.
    P. Tirupathi, A Chandra. Phys. Status Solidi. B 249(8), 1639–1645 (2012)CrossRefGoogle Scholar
  32. 32.
    A.K. Jonscher, Nature (London) 264, 673 (1977)CrossRefGoogle Scholar
  33. 33.
    K.H. Kim, J.Y. Gu, H.S. Choi, G.W. Park, T.W. Noh, Phys. Rev. Lett. 77, 1877 (1996)CrossRefGoogle Scholar
  34. 34.
    A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, I. Gruszka, J. Phys. D Appl. Phys. 38, 1450 (2005)CrossRefGoogle Scholar
  35. 35.
    A. Mukherjee, S. Basu, G. Chakraborty, M. Pal, J. Appl. Phys. 112, 014321 (2012)CrossRefGoogle Scholar
  36. 36.
    Dilip K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009)CrossRefGoogle Scholar
  37. 37.
    Rajasree Das, Tanushree Sarkar, K Mandal. J. Phys. D Appl. Phys. 45, 455002 (2012)CrossRefGoogle Scholar
  38. 38.
    K. Prasad, S. Bhagat, K. Amarnath, S.N. Choudhary, K.L. Yadav, Mater. Sci. Poland 28, 317 (2010)Google Scholar
  39. 39.
    A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui, A. Burger, J. Appl. Phys. 97, 093903 (2005)CrossRefGoogle Scholar
  40. 40.
    M.H. Kumar, S. Srinath, G.S. Kumar, S.V. Suryanarayana, J. Magn. Magn. Mater. 188, 203 (1998)CrossRefGoogle Scholar
  41. 41.
    G.A. Gehring, Ferroelectrics 61, 275 (1994)CrossRefGoogle Scholar
  42. 42.
    I. Sosnowska, W. Schafer, W. Kockelmann, K. H. Anderson, I. O. Troyanchuk, Appl. Phys. A: Mater. Sci. Process. A 74, S1040 (2002)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mohit Sahni
    • 1
    • 2
  • Naresh Kumar
    • 1
  • Sushant Singh
    • 1
  • Aashish Jha
    • 1
  • S. Chaubey
    • 1
  • Manoj Kumar
    • 3
  • M. K. Sharma
    • 4
  1. 1.Department of PhysicsMotilal Nehru National Institute of Technology AllahabadAllahabadIndia
  2. 2.Department of PhysicsSharda UniversityGreater NoidaIndia
  3. 3.Department of Physics and Materials Science and EngineeringJaypee Institute of InformationTechnologyNoidaIndia
  4. 4.Department of Applied SciencesAmity UniversityNoidaIndia

Personalised recommendations