Supercapacitive performance of chemically synthesized polypyrrole thin films: effect of monomer to oxidant ratio

  • B. H. Patil
  • R. N. Bulakhe
  • C. D. Lokhande


Polypyrrole (PPY) thin films with different PPY monomer to ammonium peroxidisulphate (APS) oxidant molar ratios have been synthesized using simple and inexpensive chemical oxidative polymerization method. An interrelation between the monomer to oxidant molar ratio, morphology and supercapacitive performance of PPY thin films is studied. Initial polymerization conditions strongly affect the morphology and electrical properties of PPY thin films. Thermo-gravimetric and differential scanning calorimetric curves show the thermal stability of PPY up to 483 K. The supercapacitive performance of PPY films is studied using cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy techniques. In the present work, PPY films deposited with 0.1:0.2 monomer to oxidant molar ratio (pyrrole:APS) show maximum specific capacitance of 754 F g−1 in 1 M H2SO4 electrolyte at the scan rate 5 mV s−1 in potential window of −0.4 to +0.6 V/SCE.


Galvanostatic Charge Oxidant Ratio Pyrrole Monomer Globular Particulate Supercapacitive Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are grateful to the University Grant Commission (UGC), New Delhi (INDIA) through DSA-I program and to Department of Science and Technology for financial supports through DST-PURSE scheme and FIST programs.


  1. 1.
    J.H. Park, J.M. Ko, O.O. Park, D.W. Kim, J. Power Sources 105, 20 (2002)CrossRefGoogle Scholar
  2. 2.
    Q. Wang, Q. Cao, X. Wang, B. Jing, H. Kuang, L. Zhou, J. Power Sources 225, 101 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Burke, J. Power Sources 91, 37 (2000)CrossRefGoogle Scholar
  4. 4.
    B. Kumar, B.K. Kaushik, Y.S. Negi, J. Mater. Sci.: Mater. Electron. 25, 1 (2014)Google Scholar
  5. 5.
    M. Mastragostino, C. Arbizzani, F. Soavi, Solid State Ionics 148, 493 (2002)CrossRefGoogle Scholar
  6. 6.
    J.W. Seo, J.T. Jang, S.W. Park, C.J. Kim, B.W. Park, J.W. Cheon, Adv. Mater. 20, 4269 (2008)CrossRefGoogle Scholar
  7. 7.
    M.V. Reddy, T. Yu, C.H. Sow, Z.X. Shen, C.T. Lim, G.V.S. Rao, B.V.R. Chowdari, Adv. Funct. Mater. 17, 2792 (2007)CrossRefGoogle Scholar
  8. 8.
    M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Angew. Chem. Int. Ed. 46, 750 (2007)CrossRefGoogle Scholar
  9. 9.
    M.S. Park, Y.M. Kang, G.X. Wang, S.X. Dou, H.K. Liu, Adv. Funct. Mater. 18, 455 (2008)CrossRefGoogle Scholar
  10. 10.
    C. Kim, K.S. Yang, M. Kojima, K. Yoshida, Y.J. Kim, Y.A. Kim, M. Endo, Adv. Funct. Mater. 16, 2393 (2006)CrossRefGoogle Scholar
  11. 11.
    X.W. Lou, D. Deng, J.Y. Lee, J. Feng, L.A. Archer, Adv. Mater. 20, 258 (2008)CrossRefGoogle Scholar
  12. 12.
    D.V. Brezoi, J Sci Arts 12, 53 (2010)Google Scholar
  13. 13.
    D.P. Dubal, S.V. Patil, W.B. Kim, C.D. Lokhande, Mater. Lett. 65, 2628 (2011)CrossRefGoogle Scholar
  14. 14.
    A.R. Rai, A.P. Jun, W.P. Ouajai, S. Ouajai, J Miner Mel Mats 18, 27 (2008)Google Scholar
  15. 15.
    D.P. Dubal, S.V. Patil, A.D. Jagadale, C.D. Lokhande, J. Alloy. Compd. 509, 8183 (2011)CrossRefGoogle Scholar
  16. 16.
    C.D. Lokhande, A.M. More, J.L. Gunjakar, J Alloys Compd 486, 570 (2009)CrossRefGoogle Scholar
  17. 17.
    K. Ariga, Y. Yamauchi, G. Rydzek, Q. Ji, Y. Yonamine, K.C.W. Wu, J.P. Hill, Chem. Lett. 43, 36 (2014)CrossRefGoogle Scholar
  18. 18.
    W. Suna, R. Zhenga, X. Chena, J. Power Sources 195, 7120 (2010)CrossRefGoogle Scholar
  19. 19.
    J.J. Cai, L.B. Kong, J. Zhang, Y.C. Luo, L. Kang, Chin. Chem. Lett. 21, 1509 (2010)CrossRefGoogle Scholar
  20. 20.
    H. Yu, J. Wu, L. Fan, K. Xu, X. Zhong, Y. Lin, J. Lin, Electrochim. Acta 56, 6881 (2011)CrossRefGoogle Scholar
  21. 21.
    J.C. Scott, P. Pfluger, M.T. Krounbi, G.B. Street, Phys Rev B 28, 2140 (1983)CrossRefGoogle Scholar
  22. 22.
    P. Ghosh, S.B. Kar, J. Appl. Polym. Sci. 91, 3737 (2004)CrossRefGoogle Scholar
  23. 23.
    N.V. Blinova, J. Stejskal, M. Trchova, J. Prokes, M. Omastova, Eur Polym J 43, 2331 (2007)CrossRefGoogle Scholar
  24. 24.
    C. Zhou, J. Han, R. Guo, Macromolecules 41, 6473 (2008)CrossRefGoogle Scholar
  25. 25.
    Y. Li, P. Sonar, L. Murphy, W. Hong, Energy Environ. Sci. 6, 1684 (2013)CrossRefGoogle Scholar
  26. 26.
    K.J. Edler, B. Yang, Chem. Soc. Rev. 42, 3765 (2013)CrossRefGoogle Scholar
  27. 27.
    K.P. Kamloth, Crit. Rev. Anal. Chem. 32, 121 (2002)CrossRefGoogle Scholar
  28. 28.
    S. Sadki, P. Schottland, N. Brodie, G. Sabouraud, Chem. Soc. Rev. 29, 283 (2000)CrossRefGoogle Scholar
  29. 29.
    F.E. Chen, G.Q. Shi, M.X. Fu, L.T. Qu, X.Y. Hong, Synth. Met. 132, 125 (2003)CrossRefGoogle Scholar
  30. 30.
    J. Arjomandi, A.A. Shah, S. Bilal, H.V. Hoang, R. Holze, Spectrochim. Acta, Part A 78, 1 (2011)CrossRefGoogle Scholar
  31. 31.
    Y.F. Chen, J. Liu, H.J. Yao, D. Mo, J.L. Duan, M.D. Hou, Y.M. Sun, L. Zhang, K. Maaz, Phys. B 405, 2461 (2010)CrossRefGoogle Scholar
  32. 32.
    M.J.L. Santos, A.G. Brolo, E.M. Girotto, Electrochim. Acta 52, 6141 (2007)CrossRefGoogle Scholar
  33. 33.
    I. Rodrı′guez, B.R. Scharifker, J. Mostany, J. Electroanal. Chem. 491, 117 (2000)CrossRefGoogle Scholar
  34. 34.
    M. Amaike, H. Yamamoto, Polym. J. 38, 703 (2006)CrossRefGoogle Scholar
  35. 35.
    S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Prog. Polym. Sci. 34, 783 (2009)CrossRefGoogle Scholar
  36. 36.
    N.T.L. Hien, B. Garcia, A. Pailleret, C. Deslouisc, Electrochim. Acta 50, 1747 (2005)CrossRefGoogle Scholar
  37. 37.
    D.P. Dubal, V.J. Fulari, C.D. Lokhande, Microporous Mesoporous Mater. 151, 511 (2012)CrossRefGoogle Scholar
  38. 38.
    M. Wan, W. Wai, Z. Zhang, L. Zhang, K. Huang, Y. Yang, Synth. Met. 175, 135 (2003)Google Scholar
  39. 39.
    M. Omastova, M. Trchova, J. Kovářová, J. Stejskal, Synth. Met. 138, 447 (2003)CrossRefGoogle Scholar
  40. 40.
    C.L. Raju, J.L. Rao, B.C.V. Reddy, K.V. Brahmam, Bull. Mater. Sci. 30, 215 (2007)CrossRefGoogle Scholar
  41. 41.
    V.G. Parale, D.B. Mahadik, S.A. Mahadik, M.S. Kavale, A. Venkateswara Rao, P.B. Wagh, J. Sol-Gel. Sci. Technol. 63, 573 (2012)CrossRefGoogle Scholar
  42. 42.
    C. He, C. Yang, Y. Li, Synth. Met. 139, 539 (2003)CrossRefGoogle Scholar
  43. 43.
    V.S. Sangawar, N.A. Moharil, Chem Sci Trans 1, 447 (2012)CrossRefGoogle Scholar
  44. 44.
    D.P. Dubal, S.H. Lee, J.G. Kim, W.B. Kim, C.D. Lokhande, J. Mater. Chem. 22, 3044 (2012)CrossRefGoogle Scholar
  45. 45.
    F. Jiang, T. Zhou, S. Tan, Y. Zhu, Y. Liu, D. Yuan, Int. J. Electrochem. Sci. 4, 1541 (2009)Google Scholar
  46. 46.
    S. Chen, W. Xing, J. Duan, X. Huc, S.Z. Qiao, J Mater Chem A 1, 2941 (2013)CrossRefGoogle Scholar
  47. 47.
    B.C. Kim, C.O. Too, J.S. Kwon, J.M. Ko, G.G. Wallace, Synth. Met. 161, 1130 (2011)CrossRefGoogle Scholar
  48. 48.
    A.M.P. Hussain, A. Kumar, J. Power Sources 161, 1486 (2006)CrossRefGoogle Scholar
  49. 49.
    S.O.A. Shahryar, J.A. Szpunar, J Biomed Mater Res A 89, 1049 (2009)CrossRefGoogle Scholar
  50. 50.
    B. Muthulakshmi, D. Kalpana, S. Pitchumani, N.G. Renganathan, J. Power Sources 158, 1533 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Thin Film Physics Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations