Structural and electrical properties of La-modified BiFeO3–BaTiO3 composites

  • C. Behera
  • R. N. P. Choudhary
  • Piyush R. Das


In the present investigation, La-modified solid solutions of BiFeO3 (BFO) and BaTiO3 (BT) in different molar ratios [i.e., (Bi0.5−x La x Ba0.5)(Fe0.5Ti0.5)O3, with x = 0.0, 0.05, 0.10 and 0.15)] have been synthesized using a solid-state reaction route. Structural and electrical properties of single phase (with minor secondary phase) of BFO–BT system have been studied in details to understand their ferroelectric and other properties. Preliminary X-ray diffraction analysis confirms the formation of a new system, which is different from that of its parent compounds. Substitution of a small amount BaTiO3 into BiFeO3 enhances dielectric and ferroelectric responses and reduces electrical leakage or tangent loss. The ac conductivity obeys Jonscher’s universal power law. The electrical behavior of the samples was investigated by impedance spectroscopy in a wide temperature range (25–525 °C) at different frequency (1 kHz–1 MHz). The impedance spectroscopy of the materials also confirms the origin of the relaxation mechanism in the system.


BaTiO3 BiFeO3 Complex Impedance Bulk Resistance High Frequency Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the grant received from DRDO (Grant number: ERIP/ER/1102202/M/01/1438 dated 25/07/2012) Government of India to carry out this work.


  1. 1.
    Y.J. Wu, X.K. Chen, J. Zhang, X.J. Chen, J. Appl. Phys. 111, 053927 (2012)CrossRefGoogle Scholar
  2. 2.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731–1733 (2004)CrossRefGoogle Scholar
  3. 3.
    T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, A. Morimoto, Appl. Phys. Lett. 94, 112904 (2009)CrossRefGoogle Scholar
  4. 4.
    Q. Zhang, X. Zhu, Y. Xu, H. Gao, Y. Xiao, D. Liang et al., J. Alloys Compd. 546, 57–62 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Sagdeo, P. Mondal, A. Upadhyay, A.K. Sinha, A.K. Srivastava, S.M. Gupta et al., Solid State Sci. 18, 1–9.10 (2013)CrossRefGoogle Scholar
  6. 6.
    V.R. Palkar, J. John, R. Pinto, Appl. Phys. Lett. 80, 1628 (2002)CrossRefGoogle Scholar
  7. 7.
    X.-H. Liu, Z. Xu, S.-B. Qu, X.-Y. Wei, J.-L. Chen, Ceram. Int. 34, 797 (2008)CrossRefGoogle Scholar
  8. 8.
    T.-H. Wang et al., Curr. Appl. Phys. 11, S240–S243 (2011)CrossRefGoogle Scholar
  9. 9.
    T.H. Wang, Y. Ding, C.S. Tu, Y.D. Yao, K.T. Wu, T.C. Lin, H.H. Yu, C.S. Ku, H.Y. Lee, J. Appl. Phys. 109, 07D907 (2011)Google Scholar
  10. 10.
    T.H. Wang, C.S. Tu, H.Y. Chen, Y. Ding, T.C. Lin, Y.D. Yao, V.H. Schmidt, K.T. Wu, J. Appl. Phys. 109, 044101 (2011)CrossRefGoogle Scholar
  11. 11.
    M.W. Lufaso, T.A. Vanderach, M. Pazos, I. Levin, R.S. Roth, J.C. Nio, V. Provenzano, P.K. Schenck, J. Solid State Chem. 179, 3900 (2006)CrossRefGoogle Scholar
  12. 12.
    E. Wu, POWD, an interactive powder diffraction data interpretation and indexing program, Ver. 2.1, School of Physical Sciences, Flinders University, (South Bedford Park, SA 5042 Australia) Google Scholar
  13. 13.
    J.C. Anderson, Dielectrics (Chapman & Hall, London, 1964)Google Scholar
  14. 14.
    S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004)CrossRefGoogle Scholar
  15. 15.
    S. Brahma, R.N.P. Choudhary, A.K. Thakur, Phys. B 355, 188 (2005)CrossRefGoogle Scholar
  16. 16.
    J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems (Chapter-4) (Wiley, New York, 1987)Google Scholar
  17. 17.
    J. Suchanicz, Mater. Sci. Eng. B 55, 114 (1998)CrossRefGoogle Scholar
  18. 18.
    C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)CrossRefGoogle Scholar
  19. 19.
    V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 55, 492 (1972)CrossRefGoogle Scholar
  20. 20.
    H. Jain, C.H. Hsieh, J. Non-Cryst. Solids 172, 1408 (1994)CrossRefGoogle Scholar
  21. 21.
    S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Phys. Stat. Sol. 201, 588 (2004)CrossRefGoogle Scholar
  22. 22.
    S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A 112, 387–395 (2013)CrossRefGoogle Scholar
  23. 23.
    S. Sen, R.N.P. Choudhary, P. Pramanik, Phys. B 387, 56 (2007)CrossRefGoogle Scholar
  24. 24.
    B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Comp. 436, 226 (2007)CrossRefGoogle Scholar
  25. 25.
    I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 58, 429 (1975)CrossRefGoogle Scholar
  26. 26.
    J.R. Macdonald, Solid State Ion. 13, 147 (1984)CrossRefGoogle Scholar
  27. 27.
    R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, J. Mater. Sci. 42, 7423 (2007)CrossRefGoogle Scholar
  28. 28.
    M. Kumar, S. Shankar, O. Parkash, O.P. Thakur, J. Mater. Sci. Mater. Electron. (2013). doi: 10.1007/s10854-013-1661-9 Google Scholar
  29. 29.
    A.K. Jonscher, Nature 267, 673 (1977)CrossRefGoogle Scholar
  30. 30.
    D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Sci. Mater. Electron. 23, 779 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Pattanayak, R.N.P. Choudhary, P.R. Das, J. Mater. Sci. Mater. Electron. 24, 2767–2771 (2013)CrossRefGoogle Scholar
  32. 32.
    G. Catalan, J.F. Scottt, Adv. Mater. 21, 2463 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • C. Behera
    • 1
  • R. N. P. Choudhary
    • 1
  • Piyush R. Das
    • 1
  1. 1.Multifunctional Material Research Laboratory, Department of Physics, ITERSiksha “O” Anusandhan UniversityBhubaneswarIndia

Personalised recommendations