Band gap tailoring, structural and morphological behavior of Zn0.96−x Co0.04Cu x O (0 ≤ x ≤ 0.10) alloys by sol–gel method

  • D. Anbuselvan
  • S. Muthukumaran
  • M. Ashokkumar


Zn0.96−x Co0.04Cu x O (0 ≤ x ≤ 0.1) nanopowders were successfully synthesized by sol–gel method. Hexagonal structure was confirmed by X-ray diffraction spectra. A new phase around 38.4° corresponding to CuO was noticed after Cu = 4 %. The reduced crystal size up to Cu = 4 % is due to the substitution of Cu2+ and the increasing crystal size after Cu = 4 % is due to the interference between Co and Cu metal ions. The higher absorption of Cu doped Zn0.96Co0.04O than undoped was due to the created charge carries. The tuning of energy gap from 3.18 to 3.69 eV by Cu-doping was discussed in terms of crystal size, the created charge carriers and the interstitial zinc atoms and oxygen deficiencies. Presence of chemical bonding and purity of the nanopowders were confirmed by Fourier transform infrared spectra.


Oxygen Deficiency Hexagonal Wurtzite Structure Room Temperature Ferromagnetism Average Crystal Size Subsequent Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to the University Grant Commission, Hyderabad, for financial support under the project (File No.: MRP-3610/11(MRP/UGC-SERO)).


  1. 1.
    S. Suwanboon, P. Amornpitoksuk, A. Haidoux, J.C. Tedenac, J. Alloys Compd. 462, 335 (2008)CrossRefGoogle Scholar
  2. 2.
    J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32, 435 (1999)CrossRefGoogle Scholar
  3. 3.
    S. Nakamura, Science 281, 956 (1998)CrossRefGoogle Scholar
  4. 4.
    C.A. Mirkin, Science 286, 2095 (1999)CrossRefGoogle Scholar
  5. 5.
    V.A. Karpina, V.I. Lazorenko, C.V. Lashkarev, V.D. Dobrowolski, L.I. Kopylova, V.A. Baturin, S.A. Lytuyn, V.P. Ovsyannikov, E.A. Mauvenko, Cryst. Res. Technol. 39, 980 (2004)CrossRefGoogle Scholar
  6. 6.
    H.Q. Yan, R. He, J. Pham, P.D. Yang, Adv. Mater. 15, 402 (2003)CrossRefGoogle Scholar
  7. 7.
    P.K. Sharma, R.K. Dutta, M. Kumar, P.K. Singh, A.C. Pandey, J. Lumin. 129(6), 605 (2009)CrossRefGoogle Scholar
  8. 8.
    Z. Tao, X. Yu, X. Fei, J. Liu, G. Yang, Y. Zhao, S. Yang, L. Yang, Opt. Mater. 31, 1 (2008)CrossRefGoogle Scholar
  9. 9.
    M. Nirmala, A. Anukaliani, Mater. Lett. 65, 2645 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34, 1946 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Muthukumaran, R. Gopalakrishnan, Phys. B 407, 3448 (2012)CrossRefGoogle Scholar
  12. 12.
    Y.M. Tao, S.Y. Ma, H.X. Chen, J.X. Meng, L.L. Hou, Y.F. Jia, X.R. Shang, Vacuum 85, 744 (2011)CrossRefGoogle Scholar
  13. 13.
    Z. Quan, D. Li, B. Sebo, W. Liu, S. Guo, S. Xu, H. Huang, G. Fang, M. Li, X. Zhao, Appl. Surf. Sci. 256, 3669 (2010)CrossRefGoogle Scholar
  14. 14.
    H.-J. Lee, G.H. Ryu, S.K. Kim, S.A. Kim, C.H. Lee, S.-Y. Jeong, C.R. Cho, Phys. Status Solidi 241, 2858 (2004)CrossRefGoogle Scholar
  15. 15.
    D. Chakraborti, S. Ramachandran, G. Trichy, J. Narayan, J.T. Prater, J. Appl. Phys. 101, 053918 (2007)CrossRefGoogle Scholar
  16. 16.
    Z. Zhang, J.B. Yi, J. Ding, L.M. Wong, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, T.C. Sum, C.H.A. Huan, T. Wu, J. Phys. Chem. C 112, 9579 (2008)CrossRefGoogle Scholar
  17. 17.
    H.T. Lin, T.S. Chin, J.C. Shih, S.H. Lin, T.M. Hong, R.T. Huang, F.R. Chen, J.J. Kai, Appl. Phys. Lett. 85, 621 (2004)CrossRefGoogle Scholar
  18. 18.
    Y. Wei, D. Hou, S. Qiao, C. Zhen, G. Tang, Phys. B 404, 2486 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Arshad, A. Azam, A.S. Ahmed, S. Mollah, A.H. Naqvi, J. Alloys Compd. 509, 8378 (2011)CrossRefGoogle Scholar
  20. 20.
    H. Liu, J. Yang, Z. Hua, Y. Zhang, L. Yang, L. Xiao, Z. Xie, Appl. Surf. Sci. 256, 4162 (2010)CrossRefGoogle Scholar
  21. 21.
    H. Xu, Q. Zhao, H. Yang, Y. Chen, J. Nanopart. Res. 11, 615 (2009)CrossRefGoogle Scholar
  22. 22.
    C.F. Jin, X. Yuan, W.W. Ge, J.M. Hong, X.Q. Xin, Nanotechnology 14, 667 (2003)CrossRefGoogle Scholar
  23. 23.
    H. Udono, Y. Sumi, S. Yamada, I. Kikuma, J. Cryst. Growth 310, 1827 (2008)CrossRefGoogle Scholar
  24. 24.
    T. Tsuzuki, P.G. McCormick, Script. Mater. 44, 1731 (2001)CrossRefGoogle Scholar
  25. 25.
    Y. Dai, Y. Zhang, Q.K. Li, C.W. Nan, Chem. Phys. Lett. 358, 83 (2002)CrossRefGoogle Scholar
  26. 26.
    C.L. Zhang, W.N. Zhou, Y. Hang, Z. Lu, H.D. Hou, Y.B. Zuo, S.J. Qin, F.H. Lu, S.L. Gu, J. Cryst. Growth 310, 1819 (2008)CrossRefGoogle Scholar
  27. 27.
    S.E. Ahn, J.S. Lee, H. Kim, S. Kim, B.H. Kang, K.H. Kim, G.T. Kim, Appl. Phys. Lett. 84, 5022 (2004)CrossRefGoogle Scholar
  28. 28.
    L. Poul, S. Ammar, N. Jouini, F. Fievet, F. Villain, J. Sol–Gel Sci. Technol. 26, 261 (2003)CrossRefGoogle Scholar
  29. 29.
    B.N. Dole, V.D. Mote, V.R. Huse, Y. Purushotham, M.K. Lande, K.M. Jadhav, S.S. Shah, Curr. Appl. Phys. 11, 762 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Muthukumaran, R. Gopalakrishnan, J. Mater. Sci.: Mater. Electron. 23, 1393 (2012)Google Scholar
  31. 31.
    O.D. Jayakumar, I.K. Gopalakrishnan, S.K. Kulshreshtha, J. Mater. Chem. 15, 3514 (2005)CrossRefGoogle Scholar
  32. 32.
    S. Zhang, F. Hu, J. He, W. Cheng, Q. Liu, Y. Jiang, Z. Pan, W. Yan, Z. Sun, S. Wei, J. Phys. Chem. C 117, 24913 (2013)CrossRefGoogle Scholar
  33. 33.
    P.K. Sharma, M. Kumar, A.C. Pandey, J. Nanopart. Res. 13, 1629 (2011)CrossRefGoogle Scholar
  34. 34.
    F. Hu, Z. Pan, T. Yao, H. Oyanagi, Y. Jiang, W. Yan, B. He, J. Ye, S. Wei, J. Phys. D Appl. Phys. 42, 125408 (2009)CrossRefGoogle Scholar
  35. 35.
    S. Anandan, S. Muthukumaran, Opt. Mater. 35, 2241 (2013)CrossRefGoogle Scholar
  36. 36.
    P.K. Sharma, R.K. Dutta, A.C. Pandey, J. Magn. Magn. Mater. 321, 4001 (2009)CrossRefGoogle Scholar
  37. 37.
    J. Pelleg, E. Elish, J. Vac. Sci. Technol., A 20, 752 (2002)CrossRefGoogle Scholar
  38. 38.
    B.D. Cullity, Elements of X-ray Diffractions (Addison-Wesley, Reading, 1978)Google Scholar
  39. 39.
    G. Srinivasan, R.T.R. Kumar, J. Kumar, J. Sol–Gel Sci. Technol. 43, 171 (2007)CrossRefGoogle Scholar
  40. 40.
    Y. Liu, J. Yang, Q. Guan, L. Yang, Y. Zhang, Y. Wang, B. Feng, J. Cao, X. Liu, Y. Yang, M. Wei, J. Alloys Compd. 486, 835 (2009)CrossRefGoogle Scholar
  41. 41.
    H. Liu, J. Yang, Z. Hua, Y. Liu, L. Yang, Y. Zhang, J. Cao, Mater. Chem. Phys. 125, 656 (2011)CrossRefGoogle Scholar
  42. 42.
    X. Peng, J. Xu, H. Zang, B. Wang, Z. Wang, J. Lumin. 128, 297 (2008)CrossRefGoogle Scholar
  43. 43.
    H.L. Liu, J.H. Yang, Y.J. Zhang, Y.X. Wang, M.B. Wei, D.D. Wang, L.Y. Zhao, J.H. Lang, M. Gao, J. Mater. Sci.: Mater. Electron. 20, 628 (2009)Google Scholar
  44. 44.
    M.S. Park, B.I. Min, Phys. Rev. B 68, 224436 (2003)CrossRefGoogle Scholar
  45. 45.
    X.F. Wang, J.B. Xu, W.Y. Cheung, J. An, N. Ke, Appl. Phys. Lett. 90, 212502 (2007)CrossRefGoogle Scholar
  46. 46.
    A. Azam, A.S. Ahmed, M.S. Ansari, M. Shafeeq, A.H. Naqvi, J. Alloys Compd. 506, 237 (2010)CrossRefGoogle Scholar
  47. 47.
    J. Diouri, J.P. Lascaray, M.E. Amrani, Phys. Rev. B 31, 7995 (1985)CrossRefGoogle Scholar
  48. 48.
    S. Suwanboon, T. Ratana, W.T. Ratana, J. Sci. Technol. 4, 111 (2007)Google Scholar
  49. 49.
    T. Takagahara, K. Takeda, Phys. Rev. B 46, 15578 (1992)CrossRefGoogle Scholar
  50. 50.
    Z. Yang, Z. Ye, Z. Xu, B. Zhao, Phys. E 42, 116 (2009)CrossRefGoogle Scholar
  51. 51.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Parts-A and B (Wiley, New York, 1997)Google Scholar
  52. 52.
    R. Silva, M. Zaniquelli, Colloid Surf. A 198, 551 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • D. Anbuselvan
    • 1
    • 2
  • S. Muthukumaran
    • 3
  • M. Ashokkumar
    • 3
  1. 1.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  2. 2.Rajah Serfoji Government CollegeThanjavurIndia
  3. 3.Department of PhysicsH.H. The Rajah’s CollegePudukkottaiIndia

Personalised recommendations