Advertisement

Microstructures and microwave dielectric properties of (1 − y)Nd1−xYbx(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics

  • Yih-Chien Chen
  • Hua-Xian Liu
  • Chih-Hung Li
  • Jing-Yu Fu
  • Yueh-Chung Cheng
Article

Abstract

The (1 − y)Nd1−xYbx(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics were prepared by the conventional solid-state method. The X-ray diffraction patterns of the Nd1−xYbx(Mg0.5Sn0.5)O3 ceramics revealed that Nd1−xYbx(Mg0.5Sn0.5)O3 is the main crystalline phase, which is accompanied by a little Nd2Sn2O7 as the second phase. An apparent density of 6.87 g/cm3, a dielectric constant (ɛ r ) of 19.48, a quality factor (Q × f) of 117,300 GHz, and a temperature coefficient of resonant frequency (τ f ) of −61 ppm/°C were obtained when the Nd0.96Yb0.04(Mg0.5Sn0.5)O3 ceramics were sintered at 1,600 °C for 4 h. The temperature coefficient of resonant frequency (τ f ) increased from −61 to −3 ppm/°C as y increased from 0 to 0.6 when the (1 − y)Nd0.96Yb0.04(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics were sintered at 1,600 °C for 4 h. 0.4Nd0.96Yb0.04(Mg0.5Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic that was sintered at 1,600 °C for 4 h had a τ f of −3 ppm/°C.

Keywords

Dielectric Constant Relative Density Resonant Frequency Apparent Density Microwave Dielectric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Science Council in Taiwan under Grant NSC 102-2622-E-262-009-CC3.

References

  1. 1.
    Y.C. Chen, S.L. Yao, J. Mater. Sci.: Mater. Electron. 23, 825 (2012)Google Scholar
  2. 2.
    Y.C. Chen, W.C. Lee, J. Mater. Sci.: Mater. Electron. 24, 345 (2013)Google Scholar
  3. 3.
    Y.C. Chen, W.Y. Hsu, Ceram. Int. 37, 55 (2010)CrossRefGoogle Scholar
  4. 4.
    Y.C. Chen, K.C. Chen, C.Y. Wu, J. Mater. Sci.: Mater. Electron. 24, 819 (2013)Google Scholar
  5. 5.
    N. Ichinose, T. Shimada, J. Eur. Ceram. Soc. 26, 1755 (2006)CrossRefGoogle Scholar
  6. 6.
    C.H. Hsu, C.F. Shih, C.C. Yu, H.H. Tung, M.H. Chung, J. Alloys Compd. 461, 355 (2008)CrossRefGoogle Scholar
  7. 7.
    W.C. Tzou, Y.S. Yang, C.F. Yang, H.H. Chung, C.J. Huang, C.C. Diao, Mater. Res. Bull. 42, 1897 (2007)CrossRefGoogle Scholar
  8. 8.
    Y.C. Chen, R.J. Tsai, Mater. Chem. Phys. 129, 116 (2011)CrossRefGoogle Scholar
  9. 9.
    Y.C. Chen, R.J. Tsai, Y.N. Wang, Ferroelectrics 396, 104 (2010)CrossRefGoogle Scholar
  10. 10.
    C.L. Huang, C.Y. Tai, C.Y. Huang, Y.H. Chien, J. Am. Ceram. Soc. 93, 1999 (2010)Google Scholar
  11. 11.
    T. Oishi, A. Kan, H. Ohsato, H. Ogawa, J. Eur. Ceram. Soc. 26, 2075 (2006)CrossRefGoogle Scholar
  12. 12.
    S.F. Wang, Y.F. Hsu, Y.R. Wang, L.T. Cheng, Y.C. Hsu, J.P. Chu, C.Y. Huang, J. Eur. Ceram. Soc. 26, 1629 (2006)CrossRefGoogle Scholar
  13. 13.
    R.D. Shannon, Acta Crystallogr. A32, 751 (1976)CrossRefGoogle Scholar
  14. 14.
    P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, J. Eur. Ceram. Soc. 21, 1723 (2001)CrossRefGoogle Scholar
  15. 15.
    B.W. Hakki, P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8, 402 (1960)CrossRefGoogle Scholar
  16. 16.
    Y. Kobayashi, M. Katoh, IEEE Trans. Microw. Theory Tech. 33, 586 (1985)CrossRefGoogle Scholar
  17. 17.
    A.J. Bosman, E.E. Havinga, Phys. Rev. 129, 1593 (1963)CrossRefGoogle Scholar
  18. 18.
    A.M. Glazer, Acta Crystallogr. A31, 756 (1975)CrossRefGoogle Scholar
  19. 19.
    I.M. Reaney, E.L. Collea, N. Setter, Jpn. J. Appl. Phys. 33, 3984 (1994)CrossRefGoogle Scholar
  20. 20.
    E.S. Kim, Y.H. Kim, J.H. Chae, D.W. Kim, K.H. Yoon, Mater. Phys. Chem. 79, 230 (2003)CrossRefGoogle Scholar
  21. 21.
    Y.N. Wang, Y.C. Chen, S.L. Yao, C.Y. Wu, Ceram. Int. 40, 2641 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Tohdo, K. Kakimoto, H. Ohsato, H. Yamada, T. Okawa, J. Eur. Ceram. Soc. 26, 2039 (2006)CrossRefGoogle Scholar
  23. 23.
    R.D. Shannon, J. Appl. Phys. 73, 348 (1993)CrossRefGoogle Scholar
  24. 24.
    C. Veneis, P.K. Davies, T. Negas, S. Bell, Mater. Res. Bull. 31, 431 (1996)CrossRefGoogle Scholar
  25. 25.
    M.P. Seabra, A.N. Salak, V.M. Ferreira, J.L. Ribeiro, L.G. Vieira, J. Eur. Ceram. Soc. 24, 2995 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yih-Chien Chen
    • 1
  • Hua-Xian Liu
    • 1
  • Chih-Hung Li
    • 1
  • Jing-Yu Fu
    • 1
  • Yueh-Chung Cheng
    • 1
  1. 1.Department of Electrical EngineeringLunghwa University of Science and TechnologyGueishan ShiangTaiwan

Personalised recommendations