Skip to main content
Log in

Microstructures and microwave dielectric properties of (1 − y)Nd1−xYbx(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The (1 − y)Nd1−xYbx(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics were prepared by the conventional solid-state method. The X-ray diffraction patterns of the Nd1−xYbx(Mg0.5Sn0.5)O3 ceramics revealed that Nd1−xYbx(Mg0.5Sn0.5)O3 is the main crystalline phase, which is accompanied by a little Nd2Sn2O7 as the second phase. An apparent density of 6.87 g/cm3, a dielectric constant (ɛ r ) of 19.48, a quality factor (Q × f) of 117,300 GHz, and a temperature coefficient of resonant frequency (τ f ) of −61 ppm/°C were obtained when the Nd0.96Yb0.04(Mg0.5Sn0.5)O3 ceramics were sintered at 1,600 °C for 4 h. The temperature coefficient of resonant frequency (τ f ) increased from −61 to −3 ppm/°C as y increased from 0 to 0.6 when the (1 − y)Nd0.96Yb0.04(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics were sintered at 1,600 °C for 4 h. 0.4Nd0.96Yb0.04(Mg0.5Sn0.5)O3–0.6Ca0.8Sr0.2TiO3 ceramic that was sintered at 1,600 °C for 4 h had a τ f of −3 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.C. Chen, S.L. Yao, J. Mater. Sci.: Mater. Electron. 23, 825 (2012)

    Google Scholar 

  2. Y.C. Chen, W.C. Lee, J. Mater. Sci.: Mater. Electron. 24, 345 (2013)

    Google Scholar 

  3. Y.C. Chen, W.Y. Hsu, Ceram. Int. 37, 55 (2010)

    Article  Google Scholar 

  4. Y.C. Chen, K.C. Chen, C.Y. Wu, J. Mater. Sci.: Mater. Electron. 24, 819 (2013)

    Google Scholar 

  5. N. Ichinose, T. Shimada, J. Eur. Ceram. Soc. 26, 1755 (2006)

    Article  Google Scholar 

  6. C.H. Hsu, C.F. Shih, C.C. Yu, H.H. Tung, M.H. Chung, J. Alloys Compd. 461, 355 (2008)

    Article  Google Scholar 

  7. W.C. Tzou, Y.S. Yang, C.F. Yang, H.H. Chung, C.J. Huang, C.C. Diao, Mater. Res. Bull. 42, 1897 (2007)

    Article  Google Scholar 

  8. Y.C. Chen, R.J. Tsai, Mater. Chem. Phys. 129, 116 (2011)

    Article  Google Scholar 

  9. Y.C. Chen, R.J. Tsai, Y.N. Wang, Ferroelectrics 396, 104 (2010)

    Article  Google Scholar 

  10. C.L. Huang, C.Y. Tai, C.Y. Huang, Y.H. Chien, J. Am. Ceram. Soc. 93, 1999 (2010)

    Google Scholar 

  11. T. Oishi, A. Kan, H. Ohsato, H. Ogawa, J. Eur. Ceram. Soc. 26, 2075 (2006)

    Article  Google Scholar 

  12. S.F. Wang, Y.F. Hsu, Y.R. Wang, L.T. Cheng, Y.C. Hsu, J.P. Chu, C.Y. Huang, J. Eur. Ceram. Soc. 26, 1629 (2006)

    Article  Google Scholar 

  13. R.D. Shannon, Acta Crystallogr. A32, 751 (1976)

    Article  Google Scholar 

  14. P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, J. Eur. Ceram. Soc. 21, 1723 (2001)

    Article  Google Scholar 

  15. B.W. Hakki, P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8, 402 (1960)

    Article  Google Scholar 

  16. Y. Kobayashi, M. Katoh, IEEE Trans. Microw. Theory Tech. 33, 586 (1985)

    Article  Google Scholar 

  17. A.J. Bosman, E.E. Havinga, Phys. Rev. 129, 1593 (1963)

    Article  Google Scholar 

  18. A.M. Glazer, Acta Crystallogr. A31, 756 (1975)

    Article  Google Scholar 

  19. I.M. Reaney, E.L. Collea, N. Setter, Jpn. J. Appl. Phys. 33, 3984 (1994)

    Article  Google Scholar 

  20. E.S. Kim, Y.H. Kim, J.H. Chae, D.W. Kim, K.H. Yoon, Mater. Phys. Chem. 79, 230 (2003)

    Article  Google Scholar 

  21. Y.N. Wang, Y.C. Chen, S.L. Yao, C.Y. Wu, Ceram. Int. 40, 2641 (2014)

    Article  Google Scholar 

  22. Y. Tohdo, K. Kakimoto, H. Ohsato, H. Yamada, T. Okawa, J. Eur. Ceram. Soc. 26, 2039 (2006)

    Article  Google Scholar 

  23. R.D. Shannon, J. Appl. Phys. 73, 348 (1993)

    Article  Google Scholar 

  24. C. Veneis, P.K. Davies, T. Negas, S. Bell, Mater. Res. Bull. 31, 431 (1996)

    Article  Google Scholar 

  25. M.P. Seabra, A.N. Salak, V.M. Ferreira, J.L. Ribeiro, L.G. Vieira, J. Eur. Ceram. Soc. 24, 2995 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council in Taiwan under Grant NSC 102-2622-E-262-009-CC3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yih-Chien Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YC., Liu, HX., Li, CH. et al. Microstructures and microwave dielectric properties of (1 − y)Nd1−xYbx(Mg0.5Sn0.5)O3–yCa0.8Sr0.2TiO3 ceramics. J Mater Sci: Mater Electron 25, 1836–1841 (2014). https://doi.org/10.1007/s10854-014-1806-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1806-5

Keywords

Navigation