Skip to main content
Log in

Characterization of SrAl2O4:Eu2+, Dy3+ phosphor nano-powders produced by microwave synthesis route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SrAl2O4 phosphor nano-powders activated with heavy elements such as Eu and Dy were prepared by microwave synthesis method. Using this method led to the reduction of processing time. Various calcinations times have been employed to produce pure SrAl2O4:Eu2+, Dy3+ phosphor materials. It was found out that microwave synthesis technique led to reduction of optimum calcinations time to 9 min. XRD analysis showed that the powders were nearly pure SrAl2O4 phase, in which the SrAl2O4 host phase has the maximum fraction of monoclinic SrAl2O4 phase. The critical pH to achieve pure SrAl2O4 phase determined to be equal to 4. For the synthesized SrAl2O4:Eu2+, Dy3+, the properties of photoluminescence such as emission, excitation and decay time were examined. Fluorescent spectrophotometer results revealed that two excitation peaks are appeared at 280 and 339 nm and an emission peak at 515 nm. The crystallite size of these pigments is about 58.22 nm after calcinations for 9 min in microwave as determined by Scherrer’s formula. SEM was used to study the morphology and shape of powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)

    Book  Google Scholar 

  2. T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, Rare Earths 29, 79 (1996)

    Google Scholar 

  3. D. Haranath, V. Shanker, H. Chander, Mater. Chem. Phys. 78, 6–10 (2002)

    Article  Google Scholar 

  4. T. Peng, L. Huajun, H. Yang, Mater. Chem. Phys. 85, 68–72 (2004)

    Article  Google Scholar 

  5. W.Y. Jia, H.B. Yuan, W.M. Yen, J. Lumin. 76, 424 (1998)

    Article  Google Scholar 

  6. G. Groppi, C. Cristiani, P. Forzatti, J. Mater. Sci. 29, 3441 (1994)

    Article  Google Scholar 

  7. J. Sikkim, J. Cer. Proc. Res. 10, 443–447 (2009)

    Google Scholar 

  8. Y. Lin et al., Mater. Chem. Phys. 70, 156 (2001)

    Article  Google Scholar 

  9. A. Nag, T.R.N. Kutty, J. Alloys Comp. 354, 221 (2003)

    Article  Google Scholar 

  10. T. Aitasalo et al., J. Alloys Comp. 341, 76 (2002)

    Article  Google Scholar 

  11. E. Shafia, A. Aghaei, M. Bodaghi, M. Tahriri, J. Mater. Sci. Mater. Electron. (2010). doi:10.1007/s10854-010-0273-x

  12. I. Bilecka, M. Niederberger, Nanoscale 2, 1269–1528 (2010)

    Article  Google Scholar 

  13. B. L. Hayes, Matthews. (2002)

  14. B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor , Chem. Rev. 104, 3893–3946 (2004)

    Article  Google Scholar 

  15. C.A. Mirkin, The beginning of the small rev. Small 1, 14–16 (2005)

    Article  Google Scholar 

  16. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243–5275 (2001)

    Article  Google Scholar 

  17. H. Kacirek, H. Lechert, J. Phys. Chem. 79, 1589–1593 (1975)

    Article  Google Scholar 

  18. H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402, 276–279 (1999)

    Article  Google Scholar 

  19. R.J. Helmich, Microwave-assisted Synthesis of Inorganic Materials. Literature Seminar. October 12, (2006)

  20. Shafia et al., Ceram. Inter. (2013). doi:10.1016/J.ceramint.2013.09.011

  21. X. Yu, C. Zhou, X. He, Z. Peng, S. Yang, Mater. Lett. 58, 1087–1091 (2004)

    Article  Google Scholar 

  22. W.S. Shi, H. Yamada, K. Nishikubo, H. Kusaba, C.N. Xu, J. Electrochem. Soc. 151, H97–H100 (2004)

    Google Scholar 

  23. J. Sanchez-Benitez, A. de Andres, M. Marchal, E. Cordoncillo, M. ValletRegi, P. Escribano, J. Solid Chem. 171, 273–277 (2003)

    Article  Google Scholar 

  24. T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, C. Yan, Mater. Lett. 58, 352–356 (2004)

    Article  Google Scholar 

  25. C.F. Bacalski, M.A. Cherry, G.A. Hiralla, J.M. Mckittrick, J. Mourant, J. Soc. Inf. Display (Suppl 1), 93–98 (2000)

  26. L.E. Shea, J. Mckittrick, O.A. Lopez, J. Am. Ceram. Soc. 79, 3257–3265 (1996)

    Article  Google Scholar 

  27. T. Mimani, Resonance 5, 50–57 (2000)

    Article  Google Scholar 

  28. S.D. Ham, K.C. Singh, T.Y. Cho, J. Lumin. 128, 301–305 (2008)

    Article  Google Scholar 

  29. Y. Lin, Z. Zhang, F. Zhang, Z. Tang, Q. Chen, Mater. Chem. Phys. 65, 103–106 (2000)

    Article  Google Scholar 

  30. S. Hongzhi, G. Zhifeng, D. Jinxiu, J. Rare, Met. Mater. Eng. 32(5), 370 (2003)

    Google Scholar 

  31. A.J. Lenus, K.G. Rajan, M. Yousuf, D. Sornadurai, B. Purniah, Mater. Lett. 54, 70–74 (2002)

    Article  Google Scholar 

  32. T. Aitasalo, P. Deren, J. Holsa, H. Jungner, J.C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Strek, J. Solid State Chem. 171, 114–121 (2003)

    Article  Google Scholar 

  33. T. Matsuzawa, Y. Aoki, N. Takeuchi, T. Murayama, J. Electrochem. Soc. 143, 2670–2673 (1996)

    Article  Google Scholar 

  34. Z. Zhou, W. Luo, B. Lü, X. Wu, Optoelectron. Adv. Mater. 5(2), 125–127 (2011)

    Google Scholar 

  35. Y. Lin, Z. Zhang, F. Zhang, Mater. Chem. Phys. 65, 103–106 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank INSF of Iran (contract number of 91/sad/23410, in 16/1/2012) for complete financial support provided for this research work. Also authors greatly appreciate Mr. Ehsan Shafia (PhD student at Department of Applied Science and Technology, Politecnicodi Torino, Torino, ITALY) for fruitful help during this research period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rajabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsagh, M., Rajabi, M. & Amini, E. Characterization of SrAl2O4:Eu2+, Dy3+ phosphor nano-powders produced by microwave synthesis route. J Mater Sci: Mater Electron 25, 1612–1619 (2014). https://doi.org/10.1007/s10854-014-1773-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1773-x

Keywords

Navigation