Characterization of SrAl2O4:Eu2+, Dy3+ phosphor nano-powders produced by microwave synthesis route

  • Mahdiyeh Elsagh
  • Masoud Rajabi
  • Elham Amini


SrAl2O4 phosphor nano-powders activated with heavy elements such as Eu and Dy were prepared by microwave synthesis method. Using this method led to the reduction of processing time. Various calcinations times have been employed to produce pure SrAl2O4:Eu2+, Dy3+ phosphor materials. It was found out that microwave synthesis technique led to reduction of optimum calcinations time to 9 min. XRD analysis showed that the powders were nearly pure SrAl2O4 phase, in which the SrAl2O4 host phase has the maximum fraction of monoclinic SrAl2O4 phase. The critical pH to achieve pure SrAl2O4 phase determined to be equal to 4. For the synthesized SrAl2O4:Eu2+, Dy3+, the properties of photoluminescence such as emission, excitation and decay time were examined. Fluorescent spectrophotometer results revealed that two excitation peaks are appeared at 280 and 339 nm and an emission peak at 515 nm. The crystallite size of these pigments is about 58.22 nm after calcinations for 9 min in microwave as determined by Scherrer’s formula. SEM was used to study the morphology and shape of powders.


Monoclinic Phase SrAl2O4 Phosphor Powder Calcination Time Aluminate Phosphor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank INSF of Iran (contract number of 91/sad/23410, in 16/1/2012) for complete financial support provided for this research work. Also authors greatly appreciate Mr. Ehsan Shafia (PhD student at Department of Applied Science and Technology, Politecnicodi Torino, Torino, ITALY) for fruitful help during this research period.


  1. 1.
    G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)CrossRefGoogle Scholar
  2. 2.
    T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, Rare Earths 29, 79 (1996)Google Scholar
  3. 3.
    D. Haranath, V. Shanker, H. Chander, Mater. Chem. Phys. 78, 6–10 (2002)CrossRefGoogle Scholar
  4. 4.
    T. Peng, L. Huajun, H. Yang, Mater. Chem. Phys. 85, 68–72 (2004)CrossRefGoogle Scholar
  5. 5.
    W.Y. Jia, H.B. Yuan, W.M. Yen, J. Lumin. 76, 424 (1998)CrossRefGoogle Scholar
  6. 6.
    G. Groppi, C. Cristiani, P. Forzatti, J. Mater. Sci. 29, 3441 (1994)CrossRefGoogle Scholar
  7. 7.
    J. Sikkim, J. Cer. Proc. Res. 10, 443–447 (2009)Google Scholar
  8. 8.
    Y. Lin et al., Mater. Chem. Phys. 70, 156 (2001)CrossRefGoogle Scholar
  9. 9.
    A. Nag, T.R.N. Kutty, J. Alloys Comp. 354, 221 (2003)CrossRefGoogle Scholar
  10. 10.
    T. Aitasalo et al., J. Alloys Comp. 341, 76 (2002)CrossRefGoogle Scholar
  11. 11.
    E. Shafia, A. Aghaei, M. Bodaghi, M. Tahriri, J. Mater. Sci. Mater. Electron. (2010). doi: 10.1007/s10854-010-0273-x
  12. 12.
    I. Bilecka, M. Niederberger, Nanoscale 2, 1269–1528 (2010)CrossRefGoogle Scholar
  13. 13.
    B. L. Hayes, Matthews. (2002)Google Scholar
  14. 14.
    B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor , Chem. Rev. 104, 3893–3946 (2004)CrossRefGoogle Scholar
  15. 15.
    C.A. Mirkin, The beginning of the small rev. Small 1, 14–16 (2005)CrossRefGoogle Scholar
  16. 16.
    G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243–5275 (2001)CrossRefGoogle Scholar
  17. 17.
    H. Kacirek, H. Lechert, J. Phys. Chem. 79, 1589–1593 (1975)CrossRefGoogle Scholar
  18. 18.
    H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402, 276–279 (1999)CrossRefGoogle Scholar
  19. 19.
    R.J. Helmich, Microwave-assisted Synthesis of Inorganic Materials. Literature Seminar. October 12, (2006)Google Scholar
  20. 20.
    Shafia et al., Ceram. Inter. (2013). doi: 10.1016/J.ceramint.2013.09.011
  21. 21.
    X. Yu, C. Zhou, X. He, Z. Peng, S. Yang, Mater. Lett. 58, 1087–1091 (2004)CrossRefGoogle Scholar
  22. 22.
    W.S. Shi, H. Yamada, K. Nishikubo, H. Kusaba, C.N. Xu, J. Electrochem. Soc. 151, H97–H100 (2004)Google Scholar
  23. 23.
    J. Sanchez-Benitez, A. de Andres, M. Marchal, E. Cordoncillo, M. ValletRegi, P. Escribano, J. Solid Chem. 171, 273–277 (2003)CrossRefGoogle Scholar
  24. 24.
    T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, C. Yan, Mater. Lett. 58, 352–356 (2004)CrossRefGoogle Scholar
  25. 25.
    C.F. Bacalski, M.A. Cherry, G.A. Hiralla, J.M. Mckittrick, J. Mourant, J. Soc. Inf. Display (Suppl 1), 93–98 (2000)Google Scholar
  26. 26.
    L.E. Shea, J. Mckittrick, O.A. Lopez, J. Am. Ceram. Soc. 79, 3257–3265 (1996)CrossRefGoogle Scholar
  27. 27.
    T. Mimani, Resonance 5, 50–57 (2000)CrossRefGoogle Scholar
  28. 28.
    S.D. Ham, K.C. Singh, T.Y. Cho, J. Lumin. 128, 301–305 (2008)CrossRefGoogle Scholar
  29. 29.
    Y. Lin, Z. Zhang, F. Zhang, Z. Tang, Q. Chen, Mater. Chem. Phys. 65, 103–106 (2000)CrossRefGoogle Scholar
  30. 30.
    S. Hongzhi, G. Zhifeng, D. Jinxiu, J. Rare, Met. Mater. Eng. 32(5), 370 (2003)Google Scholar
  31. 31.
    A.J. Lenus, K.G. Rajan, M. Yousuf, D. Sornadurai, B. Purniah, Mater. Lett. 54, 70–74 (2002)CrossRefGoogle Scholar
  32. 32.
    T. Aitasalo, P. Deren, J. Holsa, H. Jungner, J.C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Strek, J. Solid State Chem. 171, 114–121 (2003)CrossRefGoogle Scholar
  33. 33.
    T. Matsuzawa, Y. Aoki, N. Takeuchi, T. Murayama, J. Electrochem. Soc. 143, 2670–2673 (1996)CrossRefGoogle Scholar
  34. 34.
    Z. Zhou, W. Luo, B. Lü, X. Wu, Optoelectron. Adv. Mater. 5(2), 125–127 (2011)Google Scholar
  35. 35.
    Y. Lin, Z. Zhang, F. Zhang, Mater. Chem. Phys. 65, 103–106 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Metallurgy and Materials Engineering, Faculty of Technology and EngineeringImam Khomeini International University (IKIU)QazvinIran

Personalised recommendations