Study of electrophoretic deposition of ZnS:Ag/CNT composites for luminescent applications

  • Alireza Naeimi
  • Amir Masoud Arabi
  • Amir Reza Gardeshzadeh
  • Mahdi Shafiee Afarani


In present work, electrophoretic deposition of novel photoluminescence (PL) composites of ZnS:Ag/carbon nano tube (CNT) on the surface of Al substrates was investigated. In deposition process, CNT concentration and applied coating voltage were studied as the effective parameters. Deposition weight showed the reverse relationship with the amount of concentration and direct dependence to the applied voltages. Furthermore, current densities were decreased with increasing CNT concentrations up to 12.5 wt%, and increased strongly with further CNT concentrations. Moreover, applied voltage and current density show the same positive trends. Other results revealed that PL emission intensities were significantly quenched with increasing the CNT concentration. Nevertheless, PL intensities were improved with increasing applied voltage up to 300 V, but reduced with further voltage increase. Morphological studies of ZnS:Ag/CNT composites confirmed that the intertwined architecture was formed by wrapping of CNTs on the surfaces of ZnS microsize particles.


Applied Voltage Ceramic Matrix Composite Electrophoretic Deposition Deposition Weight Magnesium Nitrate Hexahydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Endo, M.S. Strano, P.M. Ajayan, Potential applications of carbon nanotubes. In Carbon Nanotubes, Topics in Applied Physics, vol. 111, ed. by A. Jorio, G. Dresselhaus, M.S. Dresselhaus (Springer-Verlag, Berlin Heidelberg, 2008), pp. 13–62 Google Scholar
  3. 3.
    E.T. Thostensona, Z. Renb, T. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)CrossRefGoogle Scholar
  4. 4.
    J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006)CrossRefGoogle Scholar
  5. 5.
    L. Bokobza, Multiwall carbon nanotube elastomeric composites: a review. Polymer 48, 4907–4920 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Echeberria, N. Rodríguez, J. Vleugels, K. Vanmeensel, A. Reyes-Rojas, A. Garcia-Reyes, C. Domínguez-Rios, A. Aguilar-Elguézabal, M.H. Bocanegra-Bernal, Hard and tough carbon nanotube-reinforced zirconia-toughened alumina composites prepared by spark plasma sintering. Carbon 50, 706–717 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Michálek, J. Sedláček, M. Parchoviansky, M. Michálková, D. Galusek, Mechanical properties and electrical conductivity of alumina/MWCNT and alumina/zirconia/MWCNT composites. Ceram. Int. 40, 1289–1295 (2014)CrossRefGoogle Scholar
  8. 8.
    C. Huang, C. Yeh, Y. Chang, Y. Hsieh, C. Ku, Q. Lai, Field emission properties of CNT–ZnO composite materials. Diam. Relat. Mater. 18, 452–456 (2009)CrossRefGoogle Scholar
  9. 9.
    Z. Hu, S. Dong, J. Hu, B. Lu, Fabrication and properties analysis of Cf–CNT/SiC composite. Ceram. Int. 39, 2147–2152 (2013)CrossRefGoogle Scholar
  10. 10.
    F. Mendoza, V.D.M. Hernández, V. Makarov, E. Febus, Brad R. Weiner, G. Morell, Room temperature gas sensor based on tin dioxide-carbon nanotubes composite films. Sens. Actuators B: Chem. 190, 227–233 (2014)CrossRefGoogle Scholar
  11. 11.
    Y. Koo, G. Littlejohn, B. Collins, Y. Yun, V.N. Shanov, M. Schulz, D. Pai, J. Sankar, Synthesis and characterization of Ag–TiO2–CNT nanoparticle composites with high photocatalytic activity under artificial light. Compos. B Eng. 57, 105–111 (2014)CrossRefGoogle Scholar
  12. 12.
    O. Valentino, M. Sarno, N.G. Rainone, M.R. Nobile, P. Ciambelli, H.C. Neitzert, G.P. Simon, Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites. Phys. E 40, 2440–2445 (2008)CrossRefGoogle Scholar
  13. 13.
    M.K. Singla, H. Singh, V. Chawla, Thermal sprayed CNT reinforced nanocomposite coatings—a review. J. Miner. Mater. Charact. Eng. 10, 717–726 (2011)Google Scholar
  14. 14.
    K. Sun, J. Yu, C. Zhang, X. Zhou, In situ growth carbon nanotube reinforced SiC/SiC composite. Mater. Lett. 66, 92–95 (2012)CrossRefGoogle Scholar
  15. 15.
    K. König, S. Novak, A. Ivekovič, K. Rade, D. Meng, A.R. Boccaccini, S. Kobe, Fabrication of CNT -SiC/SiC composites by electrophoretic deposition. J. Eur. Ceram. Soc. 30, 1131–1137 (2010)CrossRefGoogle Scholar
  16. 16.
    M.C. Schausten, D. Meng, R. Telle, A.R. Boccaccini, Electrophoretic deposition of carbon nanotubes and bioactive glass particles for bioactive composite coatings. Ceram. Int. 36, 307–312 (2010)CrossRefGoogle Scholar
  17. 17.
    B. Ferrari, R. Moreno, EPD kinetics: a review. J. Eur. Ceram. Soc. 30, 1069–1078 (2010)CrossRefGoogle Scholar
  18. 18.
    B. Raissi, E. Marzbanrad, A.R. Gardeshzadeh, Particle size separation by alternating electrophoretic deposition. J. Eur. Ceram. Soc. 29, 3289–3291 (2009)CrossRefGoogle Scholar
  19. 19.
    I. Corni, M.P. Ryan, A.R. Boccaccini, Electrophoretic deposition: from traditional ceramics to nanotechnology. J. Eur. Ceram. Soc. 28, 1353–1367 (2008)CrossRefGoogle Scholar
  20. 20.
    C. Du, D. Heldbrant, N. Pan, Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition. Mater. Lett. 57, 434–438 (2002)CrossRefGoogle Scholar
  21. 21.
    S. Wang, B. Huang, Field emission properties of Ag/SiO2/carbon nanotube films by pulsed voltage co-electrophoretic deposition. Thin Solid Films 517, 1245–1250 (2008)CrossRefGoogle Scholar
  22. 22.
    I. Zhitomirsky, A. Petric, Electrophoretic deposition of ceramic materials for fuel cell applications. J. Eur. Ceram. Soc. 20, 2055–2061 (2000)CrossRefGoogle Scholar
  23. 23.
    J.J. Moore, J.H. Kang, J.Z. Wen, Fabrication and characterization of single walled nanotube supercapacitor electrodes with uniform pores using electrophoretic deposition. Mater. Chem. Phys. 134, 68–73 (2012)CrossRefGoogle Scholar
  24. 24.
    H. Chen, Y. Li, Y. Feng, P. Lv, P. Zhang, W. Feng, Electrodeposition of carbon nanotube/carbon fabric composite using cetyltrimethylammonium bromide for high performance capacitor. Electrochim. Acta 60, 449–455 (2012)CrossRefGoogle Scholar
  25. 25.
    C.Y. Chen, T.C. Chien, Yu-C Chan, C.K. Lin, S.C. Wang, Pseudocapacitive properties of carbon nanotube/manganese oxide electrode deposited by electrophoretic deposition. Diam. Relat. Mater. 18, 482–485 (2009)CrossRefGoogle Scholar
  26. 26.
    T. Bordjiba, D.l Bélanger, Development of new nanocomposite based on nanosized-manganese oxide and carbon nanotubes for high performance electrochemical capacitors. Electrochim. Acta 55, 3428–3433 (2010)CrossRefGoogle Scholar
  27. 27.
    A.C. Valdez, M. Herrmann, A.R. Boccaccini, Alternating current electrophoretic deposition (EPD) of TiO2 nanoparticles in aqueous suspensions. J. Colloid Interface Sci. 375, 102–105 (2012)CrossRefGoogle Scholar
  28. 28.
    A. Vázquez, I. López, I. Gómez, Growth of one-dimensional zinc sulfide nanostructures through electrophoretic deposition. Mater. Lett. 65, 2422–2425 (2011)CrossRefGoogle Scholar
  29. 29.
    W. Chartarrayawadeea, S.E. Moultona, D. Li, C.O. Tooa, G.G. Wallacea, Novel composite graphene/platinum electro-catalytic electrodes prepared by electrophoretic deposition from colloidal solutions. Electrochim. Acta 60, 213–223 (2012)CrossRefGoogle Scholar
  30. 30.
    J.S. Zheng, M.X. Wang, X.S. Zhang, Y.X. Wu, P. Li, X.G. Zhou, W.K. Yuan, Platinum/carbon nanofiber nanocomposite synthesized by electrophoretic deposition as electrocatalyst for oxygen reduction. J. Power Sources 175, 211–216 (2008)CrossRefGoogle Scholar
  31. 31.
    Y.L. Min, Z.C. Chun, Field emission characteristics study for ZnO/Ag and ZnO/CNTs composites produced by DC electrophoresis. Appl. Surf. Sci. 255, 8359–8362 (2009)CrossRefGoogle Scholar
  32. 32.
    J. Cho, K. Konopka, Characterisation of carbon nanotube films deposited by electrophoretic deposition. Carbon 47, 58–67 (2009)CrossRefGoogle Scholar
  33. 33.
    A.K. Nair, Z. Qin, M.J. Buehler, Cooperative deformation of carboxyl groups in functionalized carbon nanotubes. Int. J. Solids Struct. 49, 2418–2423 (2012)CrossRefGoogle Scholar
  34. 34.
    G. Chena, L. Zhang, H. Ma, N. Yaoa, B. Zhang, Carbon nanotubes cathode of field emission lamp prepared by electrophoretic deposition. Energy Procedia 16(Part A), 240–243 (2012)CrossRefGoogle Scholar
  35. 35.
    J.H. Park, B.W. Park, Cathodoluminescent and thermal properties of carbon nanotube_ZnS:Cu, Al phosphor composites. Solid State Commun. 148, 573–576 (2008)CrossRefGoogle Scholar
  36. 36.
    C. Kaya, F. Kaya, A.R. Boccaccini, Fabrication and characterisation of Ni-coated carbon fibre-reinforced alumina ceramic matrix composites using electrophoretic deposition. Acta Mater. 49, 1189–1197 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alireza Naeimi
    • 1
  • Amir Masoud Arabi
    • 2
  • Amir Reza Gardeshzadeh
    • 2
  • Mahdi Shafiee Afarani
    • 1
  1. 1.Department of Materials Engineering, Faculty of EngineeringUniversity of Sistan and BaluchestanZahedanIran
  2. 2.Department of Nanomaterials and NanocoatingsInstitute for Color Science and Technology (ICST)TehranIran

Personalised recommendations