Advertisement

Effects of sintering time on crystal structure, dielectric properties and conductivity of (Ca0.8Sr0.2)ZrO3 ceramics

  • Weina Chen
  • Huiqing Fan
  • Changbai Long
  • Shenhui Lei
Article

Abstract

(Ca0.8Sr0.2)ZrO3 ceramics were prepared using solid-state reaction process, which were sintered at 1,480 °C for different sintering time (2, 4, 6, 8, 10, 12 h, respectively), their structures were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. Rietveld refinement for the (Ca0.8Sr0.2)ZrO3 sintered for 10 h was carried out by powder XRD at room temperature and it crystallizes in orthorhombic space group Pnma [a = 5.77341(4) Å, b = 8.05569(6) Å, c = 5.63318(4) Å and V = 261.9920(30) Å3, Z = 4]. The (Ca0.8Sr0.2)ZrO3 ceramics sintered at 1,480 °C for 2–12 h possessed a dielectric constant (ε r) of 23.6–27.9, a quality factor (Q × f) of 2,160–21,460 GHz and a temperature coefficient of resonant frequency (τ f ) from −14 to +13.6 ppm/°C. The Arrhenius plot of the dc electrical conductivity changed significantly with increasing sintering time.

Keywords

Dielectric Loss Rietveld Refinement Microwave Dielectric Property Sinter Time Orthorhombic Space Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation (51172187), the SPDRF (20116102130002, 20116102120016) and 111 Program (B08040) of MOE, and Xi’an Science and Technology Foundation (XBCL-1-08, CX12174), and Shaanxi Province Science Foundation (2013KW12-02), and the NPU Fundamental Research Foundation (NPU-FRF-JC201232) of China.

References

  1. 1.
    R.J. Cava, J. Mater. Chem. 11, 54–62 (2001)CrossRefGoogle Scholar
  2. 2.
    C.L. Huang, J.Y. Chen, J. Alloy Compd. 499, 48–52 (2010)CrossRefGoogle Scholar
  3. 3.
    X.L. Chen, H.F. Zhou, L. Fang, X.B. Liu, Y.L. Wang, J. Alloys Compd. 509, 5829–5832 (2011)CrossRefGoogle Scholar
  4. 4.
    Y.B. Chen, J. Alloys Compd. 478, 657–660 (2009)CrossRefGoogle Scholar
  5. 5.
    P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, J. Eur. Ceram. Soc. 21, 2629–2632 (2001)CrossRefGoogle Scholar
  6. 6.
    J.Y. Chen, C.L. Huang, Mater. Lett. 64, 2585–2588 (2010)CrossRefGoogle Scholar
  7. 7.
    N. Lamrani, B. Itaalit, S. Marinel, M. Aliouat, Mater. Lett. 65, 346–369 (2011)CrossRefGoogle Scholar
  8. 8.
    H. Stetson, B. Schwartz, J. Am. Ceram. Soc. 44, 420–421 (1961)CrossRefGoogle Scholar
  9. 9.
    B.W. Hakki, P.D. Coleman, IEEE Trans. Microwave Theory Tech. 8, 402–410 (1960)CrossRefGoogle Scholar
  10. 10.
    W.E. Courtney, IEEE Trans. Microwave Theory Tech. 18, 476–485 (1970)CrossRefGoogle Scholar
  11. 11.
    V.M. Orera, C. Pecharroman, J.I. Pena, R.I. Merino, C.J. Serna, J. Phys. Condens. Matter 10, 7501–7510 (1998)CrossRefGoogle Scholar
  12. 12.
    C.H. Perry, D.J. McCarthy, G. Rupprecht, Phys. Rev. 138, A1537–A1538 (1965)CrossRefGoogle Scholar
  13. 13.
    H. Zheng, I.M. Reaney, J. Mater. Res. 19, 488–495 (2004)CrossRefGoogle Scholar
  14. 14.
    A.C. Larson, R.B. Von Dreele, LANL Rep. LAUR 86, 748 (1994)Google Scholar
  15. 15.
    B.H. Toby, J. Appl. Crystallogr. 34, 210–213 (2001)CrossRefGoogle Scholar
  16. 16.
    R.I. Smith, A.R. West, J. Solid State Chem. 108, 29–36 (1994)CrossRefGoogle Scholar
  17. 17.
    R.D. Shannon, Acta Crystallogr. A A32, 751–767 (1976)CrossRefGoogle Scholar
  18. 18.
    P. Stadelmann, Java Version. 3.0505W2006, 2006Google Scholar
  19. 19.
    H. Tamura, Am. Ceram. Soc. Bull. 73, 92–95 (1994)Google Scholar
  20. 20.
    W. Wolfram, Curr. Opin. Solid State Mater. Sci. 1, 715–731 (1996)CrossRefGoogle Scholar
  21. 21.
    X.Y. Chen, S.X. Baia, M. Li, W.J. Zhang, J. Eur. Ceram. Soc. 33, 3001–3006 (2013)CrossRefGoogle Scholar
  22. 22.
    V. Ting, Y. Liu, L. Nore′n, R.L. Withers, D.J. Goossens, M. James, C. Ferraris, J. Solid State Chem. 177, 4428–4442 (2004)CrossRefGoogle Scholar
  23. 23.
    B.B. Straumal, A.A. Mazilkin, S.G. Protasova, P.B. Straumal, A.A. Myatiev, G. Schütz, E. Goering, T. Tietze, B. Baretzky, Philos. Mag. 93(10–12), 1371–1383 (2013)CrossRefGoogle Scholar
  24. 24.
    B.B. Straumal, S.G. Protasova, A.A. Mazilkin, G. Schütz, E. Goering, B. Baretzky, P.B. Straumal, JETP Lett. 97, 415–426 (2013)CrossRefGoogle Scholar
  25. 25.
    M.P. Hills, C. Schwandt, R.V. Kumar, J. Electrochem. Soc. 153, H189–H194 (2006)CrossRefGoogle Scholar
  26. 26.
    S.C. Hwang, G.M. Choi, J. Eur. Ceram. Soc. 25, 2609–2612 (2005)CrossRefGoogle Scholar
  27. 27.
    N.D. Patil, P.S. Jadhav, R.N. Jadhav, S.N. Mathad, V. Puri, Int. J. Self Propag. High Temp Synth. 22, 141–146 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Weina Chen
    • 1
  • Huiqing Fan
    • 1
  • Changbai Long
    • 1
  • Shenhui Lei
    • 1
  1. 1.State Key Laboratory of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations