Low-temperature synthesis of ZnO nanoparticles for inverted polymer solar cell application



Zinc oxide (ZnO) nanoparticles were synthesized by a simple wet chemical method at low temperature. Morphologies, crystalline structure, and optical transmission of ZnO nanoparticles were investigated. The results showed that the average diameter of as-synthesized ZnO nanoparticles was about 4.9 nm, the nanoparticles were wurtzite-structured (hexagonal) ZnO and had optical band gap of 3.28 eV. Very high optical transmission (>80 %) in visible light region of ZnO nanoparticulate thin films was achieved. Furthermore, an inverted polymer solar cell consisted of ZnO nanoparticles and polymer were fabricated. The device exhibited an open circuit voltage (Voc) of 0.50 V, a short circuit current density (Jsc) of 1.76 mA/cm2, a fill-factor of 38 %, and a power conversion efficiency of 0.42 %.


Solar Cell Power Conversion Efficiency Zinc Acetate Dihydrate Short Circuit Current Density Hybrid Solar Cell 



This work was partially supported by the National Natural Science Foundation of China (Grant No. 11304192), the Natural Science Foundation of the Education Bureau of Shaanxi Province, China (Grant No. 2013JK1113), and the Scientific Research Foundation of Shaanxi University of Technology (Grant No. SLGQD13-9). The author also gratefully acknowledges the friend help from Prof. Junsheng Yu, from School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC).


  1. 1.
    P.J. Pauzauskie, P.D. Yang, Mater. Today 9, 36 (2006)CrossRefGoogle Scholar
  2. 2.
    Z.L. Yuan, J.S. Yu, N.N. Wang, Y.D. Jiang, J. Mater. Sci. Mater. Electron. 22, 1730 (2011)CrossRefGoogle Scholar
  3. 3.
    B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, Leif. Hammarström, F. Odobel, S. Jobic, J. Am. Chem. Soc. 134, 464 (2012)CrossRefGoogle Scholar
  4. 4.
    Y.M. Yang, H. Lai, C.Y. Tao, H. Yang, J. Mater. Sci. Mater. Electron. 21, 173 (2010)CrossRefGoogle Scholar
  5. 5.
    Z.L. Yuan, J.S. Yu, N.N. Wang, Y.D. Jiang, Curr. Appl. Phys. 12, 1278 (2012)CrossRefGoogle Scholar
  6. 6.
    G.P. Li, L. Jiang, S.J. Wang, X.W. Sun, X.D. Chen, T. Wu, Cryst. Growth Des. 11, 4885 (2011)CrossRefGoogle Scholar
  7. 7.
    F. Xu, L.T. Sun, Energy Environ. Sci. 4, 818 (2011)CrossRefGoogle Scholar
  8. 8.
    S.J. Yang, S. Nam, T. Kim, J.H. Im, H. Jung, J.H. Kang, S. Wi, B. Park, C.R. Park, J. Am. Chem. Soc. 135, 7394 (2013)CrossRefGoogle Scholar
  9. 9.
    J.Z. Song, S.A. Kulinich, J. Yan, Z.G. Li, J.P. He, C.X. Kan, H.B. Zeng, Adv. Mater. 25, 5750 (2013)CrossRefGoogle Scholar
  10. 10.
    Z.L. Yuan, Y.J. Ren, Physica E 48, 128 (2013)CrossRefGoogle Scholar
  11. 11.
    A.N. Aleshin, E.L. Alexandrova, I.P. Shcherbakov, J. Phys. D Appl. Phys. 42, 105108 (2009)CrossRefGoogle Scholar
  12. 12.
    G.D. Sharma, P. Suresh, P. Balaraju, S.K. Sharma, M.S. Roy, Synth. Met. 158, 400 (2008)CrossRefGoogle Scholar
  13. 13.
    K. Yao, L. Chen, Y.W. Chen, F. Li, P.S. Wang, J. Phys. Chem. C 116, 3486 (2012)CrossRefGoogle Scholar
  14. 14.
    W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Adv. Mater. 16, 1009 (2004)CrossRefGoogle Scholar
  15. 15.
    F.C. Krebs, Sol. Energy Mater. Sol. Cells 92, 715 (2008)CrossRefGoogle Scholar
  16. 16.
    F.C. Krebs, Y. Thomann, R. Thomann, J.W. Andreasen, Nanotechnology 19, 424013 (2008)CrossRefGoogle Scholar
  17. 17.
    B.N. Pal, P. Trottman, J. Sun, H.E. Katz, Adv. Funct. Mater. 18, 1832 (2008)CrossRefGoogle Scholar
  18. 18.
    S.L. Bai, J.W. Hu, D.Q. Li, R.X. Luo, A.F. Chen, C.C. Liu, J. Mater. Chem. 21, 12288 (2011)CrossRefGoogle Scholar
  19. 19.
    M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Appl. Phys. Lett. 89, 143517 (2006)CrossRefGoogle Scholar
  20. 20.
    K. Norrman, M.V. Madsen, S.A. Gevorgyan, F.C. Krebs, J. Am. Chem. Soc. 132, 16883 (2010)CrossRefGoogle Scholar
  21. 21.
    C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. 41, 1188 (2002)CrossRefGoogle Scholar
  22. 22.
    V. Shrotriya, G. Li, Y. Yao, C.W. Chu, Y. Yang, Appl. Phys. Lett. 88, 073508 (2006)CrossRefGoogle Scholar
  23. 23.
    Z.L. Yuan, M.X. Fu, W.D. Huang, Synth. Met. 185–186, 133 (2013)CrossRefGoogle Scholar
  24. 24.
    C. Tao, S.P. Ruan, X.D. Zhang, G.H. Xie, L. Shen, X.Z. Kong, W. Dong, C.X. Liu, W.Y. Chen, Appl. Phys. Lett. 93, 193307 (2008)CrossRefGoogle Scholar
  25. 25.
    J.S. Yu, Z.L. Yuan, S.J. Han, Z. Ma, Nanoscale Res. Lett. 7, 517 (2012)CrossRefGoogle Scholar
  26. 26.
    Z.L. Yuan, J.S. Yu, W.M. Ma, Y.D. Jiang, Appl. Phys. A 106, 511 (2012)CrossRefGoogle Scholar
  27. 27.
    N.N. Wang, J.S. Yu, Y. Zang, J. Huang, Y.D. Jiang, Sol. Energy Mater. Sol. Cells 94, 263 (2010)CrossRefGoogle Scholar
  28. 28.
    S. Kaluza, M.K. Schröter, R.N. d’Alnoncourt, T. Reinecke, M. Muhler, Adv. Funct. Mater. 18, 3670 (2008)CrossRefGoogle Scholar
  29. 29.
    S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, J. Alloy. Compd. 448, 21 (2008)CrossRefGoogle Scholar
  30. 30.
    Y. Guo, X.B. Cao, X.M. Lan, C. Zhao, X.D. Xue, Y.Y. Song, J. Phys. Chem. C 112, 8832 (2008)CrossRefGoogle Scholar
  31. 31.
    H. Hoppe, N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004)CrossRefGoogle Scholar
  32. 32.
    J.Y. Kim, S.H. Kim, H.H. Lee, K. Lee, W. Ma, X. Gong, A.J. Heeger, Adv. Mater. 18, 572 (2006)CrossRefGoogle Scholar
  33. 33.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425 (2002)CrossRefGoogle Scholar
  34. 34.
    J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Science 317, 222 (2007)CrossRefGoogle Scholar
  35. 35.
    J.P. Liu, K.L. Choy, X.H. Hou, J. Mater. Chem. 21, 1966 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Physics and Electronic Information EngineeringShaanxi University of TechnologyHanzhongPeople’s Republic of China

Personalised recommendations