Advertisement

Low-temperature spin spray deposited ferrite/piezoelectric thin film magnetoelectric heterostructures with strong magnetoelectric coupling

  • Z. Zhou
  • O. Obi
  • T. X. Nan
  • S. Beguhn
  • J. Lou
  • X. Yang
  • Y. Gao
  • M. Li
  • S. Rand
  • H. Lin
  • N. X. Sun
  • G. Esteves
  • K. Nittala
  • J. L. Jones
  • K. Mahalingam
  • M. Liu
  • G. J. Brown
Article

Abstract

We report low-temperature spin spray deposited Fe3O4/ZnO thin film microwave magnetic/piezoelectric magnetoelectric heterostructures. A voltage induced effective ferromagnetic resonance field of 14 Oe was realized in Fe3O4/ZnO magnetoelectric (ME) heterostructures. Compared with most thin film magnetoelectric heterostructures prepared by high temperature (>600 °C) deposition methods, for example, pulsed laser deposition, molecular beam epitaxy, or sputtering, Fe3O4/ZnO ME heterostructures have much lower deposition temperature (<100 °C) at a much lower cost and less energy dissipation, which can be readily integrated in different integrated circuits.

Keywords

Piezoelectric Layer Piezoelectric Coefficient Photonic Sensor Effective Magnetic Field Bias Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is financially supported by NSF CAREER awards 0746810 and by the United States Air Force Research Laboratory under contract number FA8721-05-C-0002. J.J., K.N., and G.E. acknowledge support from the Army Research Office through contract number W911NF-09-1-0435. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

References

  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)CrossRefGoogle Scholar
  2. 2.
    C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 1101 (2008)CrossRefGoogle Scholar
  3. 3.
    C.A.F. Vaz, J. Hoffman, C.H. Ahn, R. Ramesh, Adv. Mater. 22, 2900–2918 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303, 661–663 (2004)CrossRefGoogle Scholar
  5. 5.
    Z. Zhou, S. Beguhn, J. Lou, S. Rand, M. Li, X. Yang, S.D. Li, M. Liu, N.X. Sun, J. Appl. Phys. 111, 103915 (2012)CrossRefGoogle Scholar
  6. 6.
    M. Liu, Z. Zhou, T. Nan, B.M. Howe, G.J. Brown, N.X. Sun, Adv. Mater. 25, 1435 (2013)CrossRefGoogle Scholar
  7. 7.
    S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 83, 2265 (2003)CrossRefGoogle Scholar
  8. 8.
    T.X. Nan, Y. Hui, M. Rinaldi, N.X. Sun, Scientific Rep. 3, 1985 (2013)Google Scholar
  9. 9.
    G.M. Yang, J. Lou, O. Obi, N.X. Sun, IEEE Microw. Wirel. Compon. Lett. 21, 240 (2011)CrossRefGoogle Scholar
  10. 10.
    J. Lou, D. Reed, M. Liu, N.X. Sun, Appl. Phys. Lett. 94, 112508 (2009)CrossRefGoogle Scholar
  11. 11.
    X. Yang, J. Wu, S. Beguhn, T. Nan, Y. Gao, Z. Zhou, N.X. Sun, IEEE Microw. Wirel. Compon. Lett. 23, 184 (2013)CrossRefGoogle Scholar
  12. 12.
    Z. Li, Y. Gao, B. Yang, Y.H. Lin, R. Yu, C.W. Nan, J. Am. Ceram. Soc. 94, 1060 (2011)CrossRefGoogle Scholar
  13. 13.
    Jaydip Das, Young-Yeal Song, Nan Mo, Pavol Krivosik, Carl E. Patton, Adv. Mater. 21, 2045 (2009)CrossRefGoogle Scholar
  14. 14.
    N. Li, M. Liu, Z.Y. Zhou, N.X. Sun, D.V.B. Murthy, G. Srinivasan, T.M. Klein, V.M. Petrov, A. Gupta, Appl. Phys. Lett. 99, 192502 (2011)CrossRefGoogle Scholar
  15. 15.
    Z. Li, J.M. Hu, L. Shu, Y. Gao, Y. Shen, Y.H. Lin, C.W. Nan, J. Appl. Phys. 111, 033918 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Liu, O. Obi, J. Lou, S. Stoute, J.Y. Huang, Z.H. Cai, K.S. Ziemer, N.X. Sun, Appl. Phys. Lett. 92, 152504 (2008)CrossRefGoogle Scholar
  17. 17.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoçd, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  18. 18.
    H. Wagata, N. Ohashi, T. Taniguchi, K. Katsumata, K. Okada, N. Matsushita, Cryst. Growth Des. 10, 4968 (2011)CrossRefGoogle Scholar
  19. 19.
    G. Tutuncu, M. Motahari, J. Bernier, M. Varlioglu, J. L. Jones, E. Ustundag, J. Am. Ceram. Soc. 1 (2012)Google Scholar
  20. 20.
    T.M. Usher, J.S. Forrester, C.R. dela Cruz, J.L. Jones, Appl. Phys. Lett. 101, 152906 (2012)CrossRefGoogle Scholar
  21. 21.
    G. Leighton, Z.R. Huang, Smart Mater. Struct. 19, 065011 (2010)CrossRefGoogle Scholar
  22. 22.
    F. Hofer and P. Warbichler, Ed. C. C. Ahn, 2nd edn (Wiley-VCH, Darmstadt, 2004), pp. 159–222Google Scholar
  23. 23.
    R. L. Johnson, Master Thesis, Iowa State University (2005)Google Scholar
  24. 24.
    N. Izyumskaya, V. Avrutin, X. Gu, B. Xiao, S. Chevtchenko, J.G. Yoon, H. Morkoc, L. Zhou, D.J. Smith, Appl. Phys. Lett. 91, 182906 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Z. Zhou
    • 1
  • O. Obi
    • 1
  • T. X. Nan
    • 1
  • S. Beguhn
    • 1
  • J. Lou
    • 1
  • X. Yang
    • 1
  • Y. Gao
    • 1
  • M. Li
    • 1
  • S. Rand
    • 1
  • H. Lin
    • 1
  • N. X. Sun
    • 1
  • G. Esteves
    • 2
  • K. Nittala
    • 2
  • J. L. Jones
    • 2
  • K. Mahalingam
    • 3
  • M. Liu
    • 3
  • G. J. Brown
    • 3
  1. 1.Department of Electrical and Computer EngineeringNortheastern UniversityBostonUSA
  2. 2.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Materials and Manufacturing DirectorateAir Force Research LaboratoryWright-Patterson, AFBUSA

Personalised recommendations