Enhancement of piezoelectric properties and temperature stability by forming an MPB in KNN-based lead-free ceramics

  • Yue-Ming Li
  • Zong-Yang Shen
  • Fen Wu
  • Tie-Zheng Pan
  • Zhu-Mei Wang
  • Zu-Gui Xiao


0.92(Na0.51K0.49−x Li x )NbO3–0.02Bi0.5K0.5TiO3–0.06BaZrO3 (x = 0, 0.01, 0.02, 0.03, 0.04, and 0.05) lead-free piezoelectric ceramics were prepared by solid state reaction route. The effect of Li doping amount on the structure and electrical properties of the ceramics were investigated. All ceramics had pure perovskite structure, while the crystallographic symmetry changed from rhombohedral to tetragonal with the increase of Li doping amount. A PZT-like morphotropic phase boundary (MPB) with the coexistence of rhombohedral and tetragonal phases was identified in the composition of x = 0.03. As expected, the ceramics of the MPB composition showed optimal properties: piezoelectric coefficient d 33 = 227 pC/N, planar electromechanical coupling coefficient k p = 39.3 %, dielectric permittivity \( \varepsilon_{33}^{T} /\varepsilon_{0} \) = 1,640, dielectric loss tanδ = 2.0 %, remnant polarization P r = 13.3 μC/cm2, coercive field E c = 1.53 kV/mm, and Curie temperature T c = 253 °C. Together with good temperature stability to 200 °C, this KNN-based lead-free ceramics should be very promising for practical applications.


Piezoelectric Property Morphotropic Phase Boundary Electric Field Amplitude Mechanical Quality Factor Polymorphic Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by National Natural Science Foundation of China (Grant Nos. 51262011 and 51102121), Natural Science Foundation of Jiangxi Province of China (Grant No. 20114BAB206023), Jiangxi Science and Technology Support Plan (Grant No. 20132BBE50014), Jiangxi Major Scientific Leader Cultivation Plan (Grant No. 2010DD01100) and Science Foundation of Jiangxi Provincial Department of Education (Grant No. KJLD13076).


  1. 1.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)CrossRefGoogle Scholar
  2. 2.
    J.F. Li, K. Wang, B. Zhang, L. Zhang, J Am Ceram Soc 89, 706 (2006)CrossRefGoogle Scholar
  3. 3.
    R. Zuo, J. Fu, D. Lv, J Am Ceram Soc 92, 283 (2009)CrossRefGoogle Scholar
  4. 4.
    Z.Y. Shen, K. Wang, J.F. Li, Appl Phys A 97, 911 (2009)CrossRefGoogle Scholar
  5. 5.
    Y. Hu, X. Liu, M. Jiang, X. Zhang, J Mater Sci-Mater Electron 24, 331 (2013)CrossRefGoogle Scholar
  6. 6.
    X.K. Zhao, B.P. Zhang, L. Zhao, L.F. Zhu, P.F. Zhou, Y. Li, Ceram Int 39, 4475 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Guo, K. Kakimoto, H. Ohsato, Mater Lett 59, 241 (2005)CrossRefGoogle Scholar
  8. 8.
    Z.Y. Shen, Y.M. Li, W.Q. Luo, Z.M. Wang, J Ceram Soc Jpn 120, 375 (2012)CrossRefGoogle Scholar
  9. 9.
    Z.Y. Shen, Y. Xu, J.F. Li, Ceram Int 38S, S331 (2012)CrossRefGoogle Scholar
  10. 10.
    N.M. Hagh, B. Jadidian, E. Ashbahian, A. Safari, IEEE Trans Ultrason Ferroelectr Freq Control 55, 214 (2008)CrossRefGoogle Scholar
  11. 11.
    Z.Y. Shen, J.F. Li, R. Chen, Q. Zhou, K.K. Shung, J Am Ceram Soc 94, 1346 (2011)CrossRefGoogle Scholar
  12. 12.
    K. Wang, F.Z. Yao, W. Jo, D. Gobeljic, V.V. Shvartsman, D.C. Lupascu, J.F. Li, J. Rödel, Adv Funct Mater 23, 4079 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Gao, J. Zhang, Y. Qing, Y. Tan, Z. Zhang, X. Hao, J Am Ceram Soc 94, 2968 (2011)CrossRefGoogle Scholar
  14. 14.
    E.K. Akdogan, K. Kerman, M. Abazari, A. Safari, Appl Phys Lett 92, 112908 (2008)CrossRefGoogle Scholar
  15. 15.
    Y. Dai, X. Zhang, G. Zhou, Appl Phys Lett 90, 262903 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Zhang, R. Xia, T.R. Shrout, G. Zang, Solid State Commun 141, 675 (2007)CrossRefGoogle Scholar
  17. 17.
    Y.M. Li, Z.Y. Shen, L. Jiang, R.H. Liao, Z.M. Wang, Y. Hong, J Electron Mater 41, 546 (2011)CrossRefGoogle Scholar
  18. 18.
    Wang RP, Bando H, Itoh M (2011) The seventh international conference on high-performance ceramics (CICC-7), Nov 4–7, Xiamen, ChinaGoogle Scholar
  19. 19.
    D. Damjanovic, IEEE Trans Ultrason Ferroelectr Freq Control 56, 1574 (2009)CrossRefGoogle Scholar
  20. 20.
    R. Zuo, J. Fu, J Am Ceram Soc 94, 1467 (2011)CrossRefGoogle Scholar
  21. 21.
    Z.Y. Shen, Y.M. Li, L. Jiang, R.R. Li, Z.M. Wang, Y. Hong, R.H. Liao, J Mater Sci-Mater Electron 22, 1071 (2011)CrossRefGoogle Scholar
  22. 22.
    K. Wang, J.F. Li, N. Liu, Appl Phys Lett 93, 092904 (2008)CrossRefGoogle Scholar
  23. 23.
    H. Yan, F. Inam, G. Viola, H. Ning, H. Zhang, Q. Jiang, T. Zeng, Z. Gao, M.J. Reece, J Adv Dielect 1, 107 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and EngineeringJingdezhen Ceramic InstituteJingdezhenChina
  2. 2.Kunshan Pant Piezoelectric Technology Company Ltd.KunshanChina

Personalised recommendations