Microstructure and dielectric properties of Ca1–3/2xBixCu3Ti4O12 (x = 0, 0.05, 0.10, 0.15 and 0.20) ceramics

  • L. F. Xu
  • T. Cheng
  • R. L. Wang
  • H. B. Xiao
  • G. Z. Liu
  • C. P. Yang


Influence of bismuth substitution on calcium site in CaCu3Ti4O12 has been investigated. Compositions of Ca1-3/2xBixCu3Ti4O12 (x = 0, 0.05, 0.10, 0.15 and 0.20) were fabricated by solid-state sintering method. Crystal structure is remained cubic. X-ray diffraction indicates the presence of secondary phase of CuO in CCTO ceramics. Bismuth doping restrains the formation of CuO phase apparently. The grain size of CaCu3Ti4O12 ceramics was greatly decreased by Bi3+ doping, resulting from the ability of bismuth to inhibit the grain growth. The dielectric and electric properties of CCTO ceramics were found to be influenced by bismuth doping. The fitting results of the complex impedance spectra showed an increase of the resistance of grain and grain boundary by bismuth substitution. Ca0.70Bi0.20Cu3Ti4O12 showed the highest dielectric constant in the low frequency range. A modest composition such as Ca0.85Bi0.10Cu3Ti4O12 expressed the optimized dielectric properties of higher dielectric constant (1.3 × 104) and lower dielectric loss (0.06) than pure CCTO. The low and high temperature dielectric loss spectra demonstrate the interfacial polarization of the initial and secondary oxygen ionization, relating with the grain and grain boundary (the electrode contact for Ca0.70Bi0.20Cu3Ti4O12) respectively.


Bismuth Oxygen Vacancy Dielectric Permittivity CCTO Ceramic Inhomogeneous Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the projects of Hubei Provincial Department of Education of China (Q20131007) and State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology)of China (SYSJJ2013-11).


  1. 1.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid. State. Chem. 151, 323 (2000)CrossRefGoogle Scholar
  2. 2.
    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 636 (2001)CrossRefGoogle Scholar
  3. 3.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  4. 4.
    S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Nat. Mater. 3, 774 (2004)CrossRefGoogle Scholar
  5. 5.
    M.A. Ramírez, P.R. Bueno, J.A. Varela, E. Longo, Appl. Phys. Lett. 89, 212102 (2006)CrossRefGoogle Scholar
  6. 6.
    A.A. Felix, J.L.M. Rupp, J.A. Varela, M.O. Orlandi, J. Appl. Phys. 112, 054512 (2012)CrossRefGoogle Scholar
  7. 7.
    V.P.B. Marques, P.R. Bueno, A.Z. Simões, M. Cilense, J.A. Varela, E. Longo, E.R. Leite, Solid. State. Commun. 138, 1 (2006)CrossRefGoogle Scholar
  8. 8.
    P. Fiorenza, R.L. Nigro, C. Bongiorno, V. Raineri, M.C. Ferarrelli, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 92, 182907 (2008)CrossRefGoogle Scholar
  9. 9.
    J.Y. Li, X.T. Zhao, S.T. Li, M.A. Alim, J. Appl. Phys. 108, 104104 (2010)CrossRefGoogle Scholar
  10. 10.
    J.J. Romeroa, P. Leret, F. Rubio-Marcos, A. Quesada, J.F. Fernández, J. Eur. Ceram. Soc. 30, 737 (2010)CrossRefGoogle Scholar
  11. 11.
    S.Y. Chung, Appl. Phys. Lett. 87, 052901 (2005)CrossRefGoogle Scholar
  12. 12.
    P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ramírez, W.C. Ribeiro, E. Longo, J.A. Varela, J. Phys. D. Appl. Phys. 42, 055404 (2009)CrossRefGoogle Scholar
  13. 13.
    W.C. Ribeiro, R.G.C. Araújo, P.R. Buenoa, Appl. Phys. Lett. 98, 132906 (2011)CrossRefGoogle Scholar
  14. 14.
    K. Bärner, X.J. Luo, X.P. Song, C. Hang, S.S. Chen, I.V. Medvedeva, C.P. Yang, J. Mater. Res. 26(1), 36 (2010)CrossRefGoogle Scholar
  15. 15.
    X.J. Luo, C.P. Yang, X.P. Song, S.S. Chen, L.F. Xu, K. Bärner, J. Am. Ceram. Soc. 94, 2512 (2011)CrossRefGoogle Scholar
  16. 16.
    X.J. Luo, C.P. Yang, X.P. Song, C. Huang, R.L. Wang, L.F. Xu, K. Bärner, J. Appl. Phys. 109, 084113 (2011)CrossRefGoogle Scholar
  17. 17.
    X.J. Luo, K. Bärner, S.L. Tang, C.P. Yang, Y.W. Du, J. Phys. Soc. Jpn. 82, 064707 (2013)CrossRefGoogle Scholar
  18. 18.
    J. Lin, B. Fu, H. Lu, C. Huang, J.W. Sheng, Ceram. Int. 39, S149 (2013)CrossRefGoogle Scholar
  19. 19.
    H. Xue, X.F. Guan, R. Yu, Z.X. Xiong, J. Alloys. Compd. 482, L14 (2009)CrossRefGoogle Scholar
  20. 20.
    L.F. Xu, P.B. Qi, X.P. Song, X.J. Luo, C.P. Yang, J. Alloys. Compd. 509, 7697 (2011)CrossRefGoogle Scholar
  21. 21.
    P. Thongbai, K. Meeporn, T. Yamwong, S. Maensiri, Mater. Lett. 106, 129 (2013)CrossRefGoogle Scholar
  22. 22.
    L. Singh, U.S. Rai, K.D. Mandal, J. Alloys. Compd. 555, 176 (2013)CrossRefGoogle Scholar
  23. 23.
    D. Xu, C. Zhang, Y.H. Lin, L. Jiao, H.M. Yuan, G.P. Zhao, X.N. Cheng, J. Alloys. Compd. 522, 157 (2012)CrossRefGoogle Scholar
  24. 24.
    Z. Yang, Y. Zhang, G. You, K. Zhang, R. Xiong, J. Shi, J. Mater. Sci. Technol. 28, 1145 (2012)CrossRefGoogle Scholar
  25. 25.
    Q.G. Chi, L. Gao, X. Wang, J.Q. Lin, J. Sun, Q.Q. Lei, J. Alloys. Compd. 559, 45 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Ceram. Int. 39, 1057 (2013)CrossRefGoogle Scholar
  27. 27.
    Y.H. Lin, W. Deng, W. Xu, Y. Liu, D.L. Chen, X.L. Zhang, C.W. Nan, Mater. Sci. Eng. B. Adv. 177, 1773 (2012)CrossRefGoogle Scholar
  28. 28.
    M.A. de la Rubia, P. Leret, A. del Campo, R.E. Alonso, A.R. López-Garcia, J.F. Fernández, J. de Frutos, J. Eur. Ceram. Soc. 32, 1691 (2012)CrossRefGoogle Scholar
  29. 29.
    A.K. Rai, N.K. Singh, S.K. Acharya, L. Singh, K.D. Mandal, Mater. Sci. Eng. B. Adv. 177, 1213 (2012)CrossRefGoogle Scholar
  30. 30.
    F.C. Luo, J.L. He, J. Hu, Y.H. Lin, J. Appl. Phys. 105, 076104 (2009)CrossRefGoogle Scholar
  31. 31.
    T.H. Yeh, G.E. Kusuma, M.B. Suresh, C.C. Chou, Mater. Res. Bull. 45, 318 (2010)CrossRefGoogle Scholar
  32. 32.
    X.J. Luo, C.P. Yang, X.P. Song, L.F. Xu, Acta. Phys. Sin. Ch. Ed. 59, 3516 (2010)Google Scholar
  33. 33.
    L. Fang, M.R. Shen, F.G. Zheng, Z.Y. Li, J. Yang, J. Appl. Phys. 104, 64110 (2008)CrossRefGoogle Scholar
  34. 34.
    C.V. Chanmal, J.P. Jog, Exp. Polym. Lett. 2, 294 (2008)CrossRefGoogle Scholar
  35. 35.
    C. Mu, Z. Huaiwu, Y. He, P. Liu, Phys. B. 405, 386 (2010)CrossRefGoogle Scholar
  36. 36.
    L. Zhang, Appl. Phys. Lett. 87, 022907 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • L. F. Xu
    • 1
    • 2
  • T. Cheng
    • 1
  • R. L. Wang
    • 1
  • H. B. Xiao
    • 1
  • G. Z. Liu
    • 1
  • C. P. Yang
    • 1
  1. 1.Faculty of Physics and Electronic TechnologyHubei UniversityWuhanPeople’s Republic of China
  2. 2.Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsHubei UniversityWuhanPeople’s Republic of China

Personalised recommendations