Advertisement

Efficient Mn-doped CdS quantum dot sensitized solar cells based on SnO2 microsphere photoelectrodes

  • Lu Liu
  • Miaoliang Huang
  • Zhang Lan
  • Jihuai Wu
  • Guanglu Shang
  • Guijing Liu
  • Jianming Lin
Article

Abstract

Mn-doped CdS quantum dot sensitized solar cells based on SnO2 microsphere photoelectrodes are prepared with successive ionic layer adsorption and reaction method. It is found that with Mn-doped CdS quantum dot sensitizers, the photovoltaic performance of the cells based on SnO2 microsphere photoelectrodes can obviously be enhanced. The reasons are owing to the improved light absorption and the expanded light absorption edge by doping Mn in CdS quantum dots. The electrochemical impedance spectroscopy analysis found that the cells with Mn-doped CdS quantum dot sensitized SnO2 microsphere photoelectrodes can efficiently suppress dark reaction, owing to the increased related resistance. Moreover, it is also found that the Mn-doped CdS quantum dot sensitized SnO2 microsphere photoelectrode can increase the electron diffusion lifetime in the cell. The power conversion efficiency of the cell with 4 wt% Mn-doped CdS quantum dot sensitizers can attain to 2.80 %, with 53 % enhancement compared with that of the CdS quantum dot sensitized cell (1.83 %).

Keywords

SnO2 Power Conversion Efficiency Photovoltaic Performance SnS2 SnO2 Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to acknowledge the support of the National Natural Science Foundation of China (Nos. U1205112, 51002053), the Key Project of the Chinese Ministry of Education (212206), the Program for Prominent Young Talents in Fujian Province University, the Program for New Century Excellent Talents in Fujian Province University, and the Promotion Program for Yong and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-YX102).

References

  1. 1.
    X. Yang, J.K. Fang, Y. Suzuma, F. Xu, A. Orita, J. Otera, S. Kajiyama, N. Koumura, K. Hara, Chem. Lett. 40, 620 (2011)CrossRefGoogle Scholar
  2. 2.
    P. Ardalan, T.P. Brennan, H.-B.-R. Lee, J.R. Bakke, I.K. Ding, M.D. McGehee, S.F. Bent, ACS Nano 5, 1495 (2011)CrossRefGoogle Scholar
  3. 3.
    H. Tsukigase, Y. Suzuki, M.-H. Berger, T. Sagawa, S. Yoshikawa, J. Nanosci. Nanotechnol. 11, 3215 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Zhu, L. Pan, T. Xu, Z. Sun, ACS Appl. Mater. Interfaces 3, 3146 (2011)CrossRefGoogle Scholar
  5. 5.
    E. Antolin, A. Marti, C.D. Farmer, P.G. Linares, E. Hernandez, A.M. Sanchez, T. Ben, S.I. Molina, C.R. Stanley, A. Luque, J. Appl. Phys. 108, 064513 (2010)Google Scholar
  6. 6.
    G. Zhu, L. Pan, T. Xu, Q. Zhao Lu, Z. Sun, Nanoscale 3, 2188 (2011)CrossRefGoogle Scholar
  7. 7.
    Z. Lan, J. Wu, J. Lin, M. Huang, J. Mater. Chem. 21, 15552 (2011)CrossRefGoogle Scholar
  8. 8.
    H.B. Wu, J.S. Chen, X.W. Lou, H.H. Hng, J. Phy, Chem. C 115, 24605 (2011)Google Scholar
  9. 9.
    L. Yang, Z. Zhang, J. Yang, Y. Yan, Y. Sun, J. Cao, M. Gao, M. Wei, J. Lang, F. Liu, Z. Wang, J. Alloys Compd. 543, 58 (2012)CrossRefGoogle Scholar
  10. 10.
    H. Yang, P.H. Holloway, Adv. Funct. Mater. 14, 152 (2004)CrossRefGoogle Scholar
  11. 11.
    P.K. Santra, P.V. Kamat, J. Am. Chem. Soc. 134, 2508 (2012)CrossRefGoogle Scholar
  12. 12.
    Z. Jindal, Mater. Sci. Appl. 1, 210 (2010)Google Scholar
  13. 13.
    X. Yin, L. Chen, C. Li, Q. Hao, S. Liu, Q. Li, E. Zhang, T. Wang, Electrochim. Acta 56, 2358 (2011)CrossRefGoogle Scholar
  14. 14.
    G.L. Shang, J.H. Wu, S. Tang, M.L. Huang, Z. Lan, Y. Li, J.C. Zhao, X.P. Zhang, J. Mater. Chem. 22, 25335 (2012)CrossRefGoogle Scholar
  15. 15.
    Y.-L. Lee, C.-H. Chang, J. Power Sources 185, 584 (2008)CrossRefGoogle Scholar
  16. 16.
    Z. Lan, J. Wu, S. Hao, J. Lin, M. Huang, Y. Huang, Energ. Environ. Sci. 2, 524 (2009)CrossRefGoogle Scholar
  17. 17.
    K. Inaba, S. Suzuki, Y. Noguchi, M. Miyayama, K. Toda, M. Sato, Eur. J. Inorg. Chem. 2008, 5471 (2008)CrossRefGoogle Scholar
  18. 18.
    Y. Sun, J. Yang, L. Yang, J. Cao, Z. Zhang, Z. Wang, H. Song, Mater. Lett. 98, 226 (2013)CrossRefGoogle Scholar
  19. 19.
    C. Zhai, H. Zhang, N. Du, B. Chen, H. Huang, Y. Wu, D. Yang, Nanoscale Res. Lett. 6, 168 (2011)CrossRefGoogle Scholar
  20. 20.
    G. Shang, J. Wu, S. Tang, L. Liu, X. Zhang, J. Phys. Chem. C 117, 4345 (2013)CrossRefGoogle Scholar
  21. 21.
    A.V. Semichaevsky, H.T. Johnson, Sol. Energy Mater. Sol. Cells 108, 189 (2013)CrossRefGoogle Scholar
  22. 22.
    Q. Zhang, Y. Zhang, S. Huang, X. Huang, Y. Luo, Q. Meng, D. Li, Electrochem. Commun. 12, 327 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Key Laboratory of Functional Materials for Fujian Higher Education, Institute of Materials Physical ChemistryHuaqiao UniversityXiamenChina

Personalised recommendations