Defect induced weak ferroelectricity and magnetism in cubic off-stoichiometric nano bismuth iron garnet: effect of milling duration

  • Pardeep K. Jha
  • Priyanka A. Jha
  • Pawan Kumar
  • K. Asokan
  • R. K. Dwivedi


The mechanical activation technique has been used to synthesize nanocrystalline multiferroic materials as it creates large density of crystal defects in these materials leading to novel magnetic properties of the nanostructured materials. In the present work, an attempt has been made to prepare nanocrystalline bismuth ferrite by mechanical activation process using high-energy planetary ball mill followed by sintering at 830 °C for 2 h. The milled powder was characterized using X-ray diffraction, scanning and transmission electron microscope, which revealed the formation of Bi3−δFe5O12 instead of BiFeO3. A giant dielectric peak has been observed at around the Curie temperature indicating magneto dielectric coupling which is a primary requisite for potential applications and transition temperature increases with the milling duration. Suppression in ferroelectric nature and enhancement in magnetic properties has been observed with the milling duration.


Ferrite Dielectric Constant Dielectric Loss BiFeO3 Transmission Electron Microscopy Micrographs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are thankful to Dr. R. K. Kotnala (NPL, Delhi) and Dr. A. K. Jha (AIACTR, Delhi) for providing experimental facilities. This research work is supported by Defence Research and Development Organisation (DRDO), India (Project No. ERIPR/ER/0803744/M/01/1246).

Supplementary material

10854_2013_1628_MOESM1_ESM.tif (2.8 mb)
Supplementary material 1 (TIFF 2888 kb)


  1. 1.
    L.B. Kong, T.S. Zhang, J. Ma, F. Boey, Prog. Mater. Sci. 53, 207–322 (2008)CrossRefGoogle Scholar
  2. 2.
    B. Antic, A. Kremenovic, N. Jovic, M.B. Pavlovic, C. Jovalekic et al., J. Appl. Phys. 111, 074309 (2012)CrossRefGoogle Scholar
  3. 3.
    I. Sosnowska, T. Paterlin-Neumaier, E. Steichele, J. Phys. C 15, 4835 (1982)CrossRefGoogle Scholar
  4. 4.
    P.K. Jha, P.A. Jha, G. Srivastava, A.K. Jha, R.K. Kotnala, R.K. Dwivedi, J. Magn. Magn. Mater. 349, 95–99 (2014)CrossRefGoogle Scholar
  5. 5.
    V. Kuzmiak, S. Eyderman, M. Vanwolleghem, Phys. Rev. B 86, 045403 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Wittekoek, T.J.A. Popma, J.M. Robertson, P.F. Bongers, Phys. Rev. B 12, 2777 (1975)CrossRefGoogle Scholar
  7. 7.
    Y.J. Wu, Y. Gao, X.M. Chen, Appl. Phys. Lett. 91, 092912 (2007)CrossRefGoogle Scholar
  8. 8.
    Y.J. Wu, C. Yu, X.M. Chen, J. Li, Appl. Phys. Lett. 100, 052902 (2012)CrossRefGoogle Scholar
  9. 9.
    C. Dong, J. Appl. Crystallogr. 32, 838 (1999)CrossRefGoogle Scholar
  10. 10.
    P. Scherrer, Nachr. Akad. Wiss. Gott. Philol. Hist. Kl. 2, 98–100 (1918)Google Scholar
  11. 11.
    M.V. Ramana, M.P. Reddy, N.R. Reddy, K.V. Siva Kumar, V.R.K. Murthy, B.S. Murty, J. Nanomater. 783043, 8 pp (2010)Google Scholar
  12. 12.
    S.K.S. Parashar, R.N.P. Choudhary, B.S. Murty, J. Appl. Phys. 94(9), 6091–6096 (2003)CrossRefGoogle Scholar
  13. 13.
    C. Scott, M. Kaliszewski, C. Greskovich, L. Levinson, J. Am. Ceram. Soc. 85(5), 1275–1280 (2002)CrossRefGoogle Scholar
  14. 14.
    D.B. Williams, Tranmission Electron Microscopy II: Diffraction (Plenum press, New York, 1996)CrossRefGoogle Scholar
  15. 15.
    L. Luo, Y. Kang, J.C. Yang, G. Zhou, J. Appl. Phys. 111, 083533 (2012)CrossRefGoogle Scholar
  16. 16.
    A.L. Patterson, Phys. Rev. B 56, 978 (1939)CrossRefGoogle Scholar
  17. 17.
    J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102–113 (1978)CrossRefGoogle Scholar
  18. 18.
    R.C. Buchanan, Ceramic Materials for Electronics: Processing, Properties and Applications (Marcel Dekker Inc., New York, 1991)Google Scholar
  19. 19.
    R.K. Dwivedi, D. Kumar, O. Prakash, J. Phys. D Appl. Phys. 33(1), 88 (2000)CrossRefGoogle Scholar
  20. 20.
    Y. Noguchi, M. Miyayama, Appl. Phys. Lett. 78, 1903–1905 (2001)CrossRefGoogle Scholar
  21. 21.
    A. Chen, Y. Zhi, L.E. Cross, Phys. Rev. B 62, 228–236 (2000)CrossRefGoogle Scholar
  22. 22.
    P.A. Jha, A.K. Jha, J. Mater. Sci. Mater. Electron. 24, 1511–1518 (2013)CrossRefGoogle Scholar
  23. 23.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)Google Scholar
  24. 24.
    B. Vertruyen, R. Cloots, J.S. Abell, T.J. Jackson, R.C. Da Silva, E. Popova, N. Keller, Phys. Rev. B 78, 094429 (2008)CrossRefGoogle Scholar
  25. 25.
    S.O. Pillai, Solid State Physics (New Age International (P) Ltd, Delhi, 2005)Google Scholar
  26. 26.
    D.L. Fox, D.R. Tilley, J.F. Scott, M.H.J. Guggenheim Bell, Phys. Rev. B 21(7), 2926 (1980)CrossRefGoogle Scholar
  27. 27.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 87th edn. (CRC, Boca Raton, 2007)Google Scholar
  28. 28.
    R.K. Dwivedi, D. Kumar, O. Prakash, J. Mater. Sci. 36, 3641–3648 (2001)CrossRefGoogle Scholar
  29. 29.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2003)Google Scholar
  30. 30.
    K.F. Wang, J.-M. Liu, Z.F. Ren, Adv. Phys. 58(4), 321–448 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pardeep K. Jha
    • 1
  • Priyanka A. Jha
    • 1
  • Pawan Kumar
    • 2
  • K. Asokan
    • 2
  • R. K. Dwivedi
    • 1
  1. 1.Department of Physics and Material Science and EngineeringJaypee Institute of Information TechnologyNoidaIndia
  2. 2.Inter-University Accelerator CentreNew DelhiIndia

Personalised recommendations