Skip to main content
Log in

Defect induced weak ferroelectricity and magnetism in cubic off-stoichiometric nano bismuth iron garnet: effect of milling duration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The mechanical activation technique has been used to synthesize nanocrystalline multiferroic materials as it creates large density of crystal defects in these materials leading to novel magnetic properties of the nanostructured materials. In the present work, an attempt has been made to prepare nanocrystalline bismuth ferrite by mechanical activation process using high-energy planetary ball mill followed by sintering at 830 °C for 2 h. The milled powder was characterized using X-ray diffraction, scanning and transmission electron microscope, which revealed the formation of Bi3−δFe5O12 instead of BiFeO3. A giant dielectric peak has been observed at around the Curie temperature indicating magneto dielectric coupling which is a primary requisite for potential applications and transition temperature increases with the milling duration. Suppression in ferroelectric nature and enhancement in magnetic properties has been observed with the milling duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.B. Kong, T.S. Zhang, J. Ma, F. Boey, Prog. Mater. Sci. 53, 207–322 (2008)

    Article  Google Scholar 

  2. B. Antic, A. Kremenovic, N. Jovic, M.B. Pavlovic, C. Jovalekic et al., J. Appl. Phys. 111, 074309 (2012)

    Article  Google Scholar 

  3. I. Sosnowska, T. Paterlin-Neumaier, E. Steichele, J. Phys. C 15, 4835 (1982)

    Article  Google Scholar 

  4. P.K. Jha, P.A. Jha, G. Srivastava, A.K. Jha, R.K. Kotnala, R.K. Dwivedi, J. Magn. Magn. Mater. 349, 95–99 (2014)

    Article  Google Scholar 

  5. V. Kuzmiak, S. Eyderman, M. Vanwolleghem, Phys. Rev. B 86, 045403 (2012)

    Article  Google Scholar 

  6. S. Wittekoek, T.J.A. Popma, J.M. Robertson, P.F. Bongers, Phys. Rev. B 12, 2777 (1975)

    Article  Google Scholar 

  7. Y.J. Wu, Y. Gao, X.M. Chen, Appl. Phys. Lett. 91, 092912 (2007)

    Article  Google Scholar 

  8. Y.J. Wu, C. Yu, X.M. Chen, J. Li, Appl. Phys. Lett. 100, 052902 (2012)

    Article  Google Scholar 

  9. C. Dong, J. Appl. Crystallogr. 32, 838 (1999)

    Article  Google Scholar 

  10. P. Scherrer, Nachr. Akad. Wiss. Gott. Philol. Hist. Kl. 2, 98–100 (1918)

    Google Scholar 

  11. M.V. Ramana, M.P. Reddy, N.R. Reddy, K.V. Siva Kumar, V.R.K. Murthy, B.S. Murty, J. Nanomater. 783043, 8 pp (2010)

    Google Scholar 

  12. S.K.S. Parashar, R.N.P. Choudhary, B.S. Murty, J. Appl. Phys. 94(9), 6091–6096 (2003)

    Article  Google Scholar 

  13. C. Scott, M. Kaliszewski, C. Greskovich, L. Levinson, J. Am. Ceram. Soc. 85(5), 1275–1280 (2002)

    Article  Google Scholar 

  14. D.B. Williams, Tranmission Electron Microscopy II: Diffraction (Plenum press, New York, 1996)

    Book  Google Scholar 

  15. L. Luo, Y. Kang, J.C. Yang, G. Zhou, J. Appl. Phys. 111, 083533 (2012)

    Article  Google Scholar 

  16. A.L. Patterson, Phys. Rev. B 56, 978 (1939)

    Article  Google Scholar 

  17. J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102–113 (1978)

    Article  Google Scholar 

  18. R.C. Buchanan, Ceramic Materials for Electronics: Processing, Properties and Applications (Marcel Dekker Inc., New York, 1991)

    Google Scholar 

  19. R.K. Dwivedi, D. Kumar, O. Prakash, J. Phys. D Appl. Phys. 33(1), 88 (2000)

    Article  Google Scholar 

  20. Y. Noguchi, M. Miyayama, Appl. Phys. Lett. 78, 1903–1905 (2001)

    Article  Google Scholar 

  21. A. Chen, Y. Zhi, L.E. Cross, Phys. Rev. B 62, 228–236 (2000)

    Article  Google Scholar 

  22. P.A. Jha, A.K. Jha, J. Mater. Sci. Mater. Electron. 24, 1511–1518 (2013)

    Article  Google Scholar 

  23. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)

    Google Scholar 

  24. B. Vertruyen, R. Cloots, J.S. Abell, T.J. Jackson, R.C. Da Silva, E. Popova, N. Keller, Phys. Rev. B 78, 094429 (2008)

    Article  Google Scholar 

  25. S.O. Pillai, Solid State Physics (New Age International (P) Ltd, Delhi, 2005)

    Google Scholar 

  26. D.L. Fox, D.R. Tilley, J.F. Scott, M.H.J. Guggenheim Bell, Phys. Rev. B 21(7), 2926 (1980)

    Article  Google Scholar 

  27. D.R. Lide, CRC Handbook of Chemistry and Physics, 87th edn. (CRC, Boca Raton, 2007)

    Google Scholar 

  28. R.K. Dwivedi, D. Kumar, O. Prakash, J. Mater. Sci. 36, 3641–3648 (2001)

    Article  Google Scholar 

  29. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2003)

    Google Scholar 

  30. K.F. Wang, J.-M. Liu, Z.F. Ren, Adv. Phys. 58(4), 321–448 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. R. K. Kotnala (NPL, Delhi) and Dr. A. K. Jha (AIACTR, Delhi) for providing experimental facilities. This research work is supported by Defence Research and Development Organisation (DRDO), India (Project No. ERIPR/ER/0803744/M/01/1246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Dwivedi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 2888 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, P.K., Jha, P.A., Kumar, P. et al. Defect induced weak ferroelectricity and magnetism in cubic off-stoichiometric nano bismuth iron garnet: effect of milling duration. J Mater Sci: Mater Electron 25, 664–672 (2014). https://doi.org/10.1007/s10854-013-1628-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1628-x

Keywords

Navigation