Effect of Pd thickness on wettability and interfacial reaction of Sn-1.0Ag-Ce solders on ENEPIG surface finish



The wetting balance test was used to study the wettability of Sn-1.0Ag-Ce (Ce content = 0, 0.1, 0.3, and 0.5 wt%) solder alloys on electroless nickel/electroless palladium/immersion gold (ENEPIG) surface finishes with Pd thicknesses of 0, 0.05, 0.1, and 0.15 μm. Scanning electron microscopy was used to evaluate the interfacial reaction between the molten solders and surface finish materials during the wetting test. The Ni3Sn4 intermetallic compound (IMC) plays an important role in promoting wetting properties. The Pd layer retards formation of the Ni3Sn4 IMC and changes its morphology, thereby affecting the wettability of the surface finish/solder systems. ENEPIG surface finishes seem to be suitable for use with cerium-containing solders.


Interfacial Reaction Surface Finish Solder Alloy Molten Solder Ag3Sn Phase 



This research was supported by World Class University program funded by the Ministry of Education, Science and Technology through the National Research Foundation of Korea (Grant No. R32-10124).


  1. 1.
    M. Abtew, G. Selvaduray, Mater. Sci. Eng. R. R27, 95–141 (2000)CrossRefGoogle Scholar
  2. 2.
    K. Zeng, K.N. Tu, Mater. Sci. Eng. R. R38, 55–105 (2002)CrossRefGoogle Scholar
  3. 3.
    M.N. Islam, Y.C. Chan, A. Sharif, J. Mater. Res. 19, 2897–2904 (2004)CrossRefGoogle Scholar
  4. 4.
    S. Kumar, D. Jung, J.P. Jung, J. Mater. Sci. Mater. Electron. 24, 1748–1757 (2013)CrossRefGoogle Scholar
  5. 5.
    K.N. Tu, A.M. Gusak, M. Li, J. Appl. Phys. 93, 1335–1353 (2003)CrossRefGoogle Scholar
  6. 6.
    J.W. Yoon, C.B. Lee, S.B. Jung, J. Electron. Mater. 32, 1195–1202 (2003)CrossRefGoogle Scholar
  7. 7.
    Y.W. Yen, P.H. Tsai, Y.K. Fang, J. Alloys Compd. 517, 111–117 (2012)CrossRefGoogle Scholar
  8. 8.
    L. Zhang, X.Y. Fan, C.W. He, G.H. Guo, J. Mater. Sci. Mater. Electron. 24, 3249–3254 (2013)CrossRefGoogle Scholar
  9. 9.
    J.W. Yoon, S.B. Jung, J. Alloys Compd. 458, 200–207 (2008)CrossRefGoogle Scholar
  10. 10.
    B.I. Noh, J.B. Lee, S.B. Jung, Microelectron. Reliab. 48, 652–656 (2008)CrossRefGoogle Scholar
  11. 11.
    J.W. Yoon, B.I. Noh, J.H. Choi, S.B. Jung, J. Mater. Sci. Mater. Electron. 22, 745–750 (2011)CrossRefGoogle Scholar
  12. 12.
    Q.V. Bui, N.D. Nam, B.I. Noh, A. Kar, J.G. Kim, S.B. Jung, Matter. Corros. 61, 30–33 (2010)CrossRefGoogle Scholar
  13. 13.
    Q.V. Bui, N.D. Nam, J.W. Yoon, D.H. Choi, A. Kar, J.G. Kim, S.B. Jung, J. Electron. Mater. 40, 1937–1942 (2011)CrossRefGoogle Scholar
  14. 14.
    Q.V. Bui, N.D. Nam, D.H. Choi, C.B. Lee, C.Y. Lee, A. Kar, J.G. Kim, S.B. Jung, Mater. Res. Bull. 45, 305–308 (2010)CrossRefGoogle Scholar
  15. 15.
    Y.Y. Chen, J.G. Duh, J. Mater. Sci. Mater. Electron. 11, 279–283 (2000)CrossRefGoogle Scholar
  16. 16.
    A.S. Zuruzi, C.H. Chiu, S.K. Lahiri, K.N. Tu, J. Appl. Phys. 86, 4916–4921 (1999)CrossRefGoogle Scholar
  17. 17.
    P.T. Vianco, R. Darrel, Frear. JOM 45, 14–19 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan UniversityJangan-GuRepublic of Korea

Personalised recommendations