Dielectric behavior and energy storage properties in BaO–SrO–Nb2O5–B2O3 system glass–ceramics with Gd2O3 addition

  • Jun Song
  • Guohua Chen


A series of strontium barium niobate-based borate system glass–ceramics with Gd2O3 addition have been prepared by controlled crystallization method. The effect of Gd2O3 addition on the microstructure, phase evolution and dielectric properties has been investigated. The results show that the addition of Gd2O3 to the glass–ceramics changes the dielectric property and energy-storage density. Typically, the glass–ceramics with 0.5 mol% Gd2O3 heat treated at 630 °C/2 h + 800 °C/3 h possesses a dielectric constant of 136, a breakdown strength of 1,075 kV/mm and energy-storage density of 6.94 J/cm3, which is suitable for the application in high energy-storage capacitors.


Dielectric Constant Nb2O5 Glass Matrix Gd2O3 Remnant Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Natural Science Foundation of China (NSFC No.51162002), and Science and Technology Project of Guangxi Returned Personnel (Contract No. 2012-250).


  1. 1.
    C.T. Cheng, M. Lanagan, J.T. Lin, B. Jones, M.J. Pan, J. Mater. Res. 20, 438 (2005)CrossRefGoogle Scholar
  2. 2.
    E.P. Gorzkowski, M.J. Pan, B. Bender, C.C.M. Wu, J. Electroceram. 18, 269 (2007)CrossRefGoogle Scholar
  3. 3.
    J.C. Chen, Y. Zhang, C.S. Deng, X.M. Dai, J. Am. Ceram. Soc. 92, 1863 (2009)CrossRefGoogle Scholar
  4. 4.
    Z. Wang, H.J. Li, L.L. Zhang, Y.P. Pu, J. Mater. Sci. Mater. Electron. 24, 3418 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Herczog, J. Am. Ceram. Soc. 47, 107 (1964)CrossRefGoogle Scholar
  6. 6.
    J. Du, B. Jones, M. Lanagan, Mater. Lett. 59, 2821 (2005)CrossRefGoogle Scholar
  7. 7.
    B. Rangarajan, B. Jones, T. Shrout, M. Lanagan, J. Am. Ceram. Soc. 90, 784 (2007)CrossRefGoogle Scholar
  8. 8.
    E.P. Gorzkowski, M.J. Pan, B.A. Bender, C.C.M. Wu, J. Am. Ceram. Soc. 91, 1065 (2008)CrossRefGoogle Scholar
  9. 9.
    J.J. Shyu, C.H. Chen, Ceram. Int. 29, 447 (2003)CrossRefGoogle Scholar
  10. 10.
    J.J. Shyu, J.R. Wang, J. Am. Ceram. Soc. 83, 3135 (2003)CrossRefGoogle Scholar
  11. 11.
    T.Y. Liu, G.H. Chen, J. Song, C.L. Yuan, Ceram. Int. 39, 5553 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Zhou, Q.M. Zhang, J. Luo, Q. Tang, J. Du, Scripta Mater. 65, 296 (2011)CrossRefGoogle Scholar
  13. 13.
    Y.K. Zeng, X.Y. Qin, S.L. Jiang, G.Z. Zhang, L. Zhang, J. Am. Ceram. Soc. 94, 469 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Yoshikawa, H. Itagaki, T. Fukuda, K. Lebbou, A. El Hassouni, A. Brenier, C. Goutaudier, O. Tillement, G. Boulon, J. Cryst. Growth 247, 148 (2003)CrossRefGoogle Scholar
  15. 15.
    R.D. Shannon, C.T. Prewit, Acta Crystallogr. B 25, 925 (1969)CrossRefGoogle Scholar
  16. 16.
    A.L. Young, G.E. Hilmas, S.C. Zhang, R.W. Schwartz, J. Mater. Sci. Lett. 42, 5613 (2007)Google Scholar
  17. 17.
    N.H. Fletcher, A.D. Hilton, B.W. Ricketts, Appl. Phys. A. Mater. 29, 253 (1996)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinChina
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations