Advertisement

Improving the quality of GaN epilayer by preparing a novel patterned sapphire substrate

  • Dechao Yang
  • Hongwei Liang
  • Yu Qiu
  • Rensheng Shen
  • Yang Liu
  • Xiaochuan Xia
  • Shiwei Song
  • Kexiong Zhang
  • Zhennan Yu
  • Guotong Du
Article

Abstract

GaN epilayer was grown on a new polyhedral patterned sapphire substrate (new PSS) by metal–organic chemical vapor deposition. The new PSS was prepared by combining the dry etching technique and wet etching technique. The X-ray diffraction indicated that the full width at half maximum values of (0002) and (\(10\overline{1}2\)) diffraction peaks in the GaN epilayer grown on the new PSS were evidently smaller than that in the GaN epilayer grown on the normal treated PSS. The improvement of GaN quality was attributed to the reduction of threading dislocations (TDs) in GaN epilayer, and the mechanism of the reduction of TDs was analyzed. The influence of the new PSS on the optical properties as well as the residual stress in GaN epilayer was also discussed.

Keywords

Residual Compressive Stress Sapphire Substrate Light Extraction Efficiency Inductively Couple Plasma Etching Patterned Sapphire Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by national natural science foundation of china (Nos. 61223005, 61076045, 11004020), national high technology research and development program (863 program) (No. 2011AA03A102), the fundamental research funds for the central universities (Nos. DUT12LK22, DUT11LK43, DUT11RC (3) 45, DUT13RC205), the research fund for the doctoral program of higher education (No. 20110041120045), the open fund of the state key laboratory of functional materials for informatics.

References

  1. 1.
    H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, G. Wang, J. Appl. Phys. 103, 014314 (2008)CrossRefGoogle Scholar
  2. 2.
    J.H. Lee, J.T. Oh, Y.C. Kim, J.H. Lee, IEEE Photon. Technol. Lett. 20, 1563 (2008)CrossRefGoogle Scholar
  3. 3.
    Y.J. Lee, J.M. Hwang, T.C. Hsu, M.H. Hsieh, M.J. Jou, B.J. Lee, T.C. Lu, H.C. Kuo, S.C. Wang, IEEE Photon. Technol. Lett. 18, 1152 (2006)CrossRefGoogle Scholar
  4. 4.
    K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, T. Taguchi, Jpn. J. Appl. Phys. 40, L583 (2001)CrossRefGoogle Scholar
  5. 5.
    M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, T. Mukai, Jpn. J. Appl. Phys. 41, L1431 (2002)CrossRefGoogle Scholar
  6. 6.
    D.S. Wu, W.K. Wang, W.C. Shih, R.H. Horng, C.E. Lee, W.Y. Lin, J.S. Fang, IEEE Photon. Technol. Lett. 17, 288 (2005)CrossRefGoogle Scholar
  7. 7.
    H.C. Lin, R.S. Lin, J.I. Chyi, C.M. Lee, IEEE Photon. Technol. Lett. 20, 1621 (2008)CrossRefGoogle Scholar
  8. 8.
    H.W. Choi, C. Liu, E. Gu, G. McConnell, J.M. Girkin, I.M. Watson, M.D. Dawson, Appl. Phys. Lett. 84, 2253 (2004)CrossRefGoogle Scholar
  9. 9.
    M.T. Wang, K.Y. Liao, Y.L. Li, IEEE Photon. Technol. Lett. 23, 962 (2011)CrossRefGoogle Scholar
  10. 10.
    C.H. Jeong, D.W. Kim, H.Y. Lee, H.S. Kim, Y.J. Sung, G.Y. Yeom, Surf. Coat. Tech. 171, 280 (2003)CrossRefGoogle Scholar
  11. 11.
    J. Wang, L.W. Guo, H.Q. Jia, Z.G. Xing, Y. Wang, H. Chen, J.M. Zhou, Jpn. J. Appl. Phys. 44, L982 (2005)CrossRefGoogle Scholar
  12. 12.
    C.C. Pan, C.H. Hsieh, C.W. Lin, J.I. Chyi, J. Appl. Phys. 102, 084503 (2007)CrossRefGoogle Scholar
  13. 13.
    W. Kern, RCA Rev. 39, 278 (1978)Google Scholar
  14. 14.
    B. Heying, X.H. Wu, S. Keller, Y. Li, D. Kapolnek, B.P. Keller, S.P. DenBaars, J.S. Speck, Appl. Phys. Lett. 68, 643 (1996)CrossRefGoogle Scholar
  15. 15.
    X.J. Ning, F.R. Chien, P. Pirouz, J.W. Yang, M.A. Khan, J. Mater. Res. 11, 580 (1995)CrossRefGoogle Scholar
  16. 16.
    X.H. Wu, P. Fini, E.J. Tarsa, B. Heying, S. Keller, U.K. Mishra, S.P. Denbaars, J.S. Speck, J. Cryst. Growth 189/190, 231 (1998)CrossRefGoogle Scholar
  17. 17.
    P. Fini, X. Wu, E.J. Tarsa, Y. Golan, V. Srikant, S.P. Denbaars, J.S. Speck, Jpn. J. Appl. Phys. 37, 4460 (1998)CrossRefGoogle Scholar
  18. 18.
    H.Y. Shin, S.K. Kwon, Y.I. Changa, M.J. Choa, K.H. Park, J. Cryst. Growth 311, 4167 (2009)CrossRefGoogle Scholar
  19. 19.
    Y.B. Tao, T.J. Yu, Z.Y. Yang, D. Ling, Y. Wang, Z.Z. Chen, Z.J. Yang, G.Y. Zhang, J. Cryst. Growth 315, 183 (2011)CrossRefGoogle Scholar
  20. 20.
    P. Vennéguès, B. Beaumont, V. Bousquet, M. Vaille, P. Gibart, J. Appl. Phys. 87, 4175 (2000)CrossRefGoogle Scholar
  21. 21.
    S. Dassonnevile, A. Amokrane, B. Sieber, J.L. Farvacque, B. Beaumont, P. Gibart, J. Appl. Phys. 89, 3736 (2001)CrossRefGoogle Scholar
  22. 22.
    R. Stepniewski, K.P. Korona, A. Wysmolek, J.M. Baranowski, K. Pakula, M. Potemski, G. Martinez, I. Grzegory, S. Porowski, Phys. Rev. B 56, 15151 (1997)CrossRefGoogle Scholar
  23. 23.
    H. Harima, J. Phys-Condens. Mat. 14, R967 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dechao Yang
    • 1
  • Hongwei Liang
    • 2
    • 3
  • Yu Qiu
    • 2
  • Rensheng Shen
    • 2
  • Yang Liu
    • 2
  • Xiaochuan Xia
    • 2
  • Shiwei Song
    • 2
  • Kexiong Zhang
    • 2
  • Zhennan Yu
    • 4
  • Guotong Du
    • 1
    • 2
  1. 1.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina
  2. 2.School of Physics and Optoelectronic TechnologyDalian University of TechnologyDalianChina
  3. 3.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina
  4. 4.Zhejiang Crystal-Optech Co., Ltd.TaizhouChina

Personalised recommendations