Advertisement

Effects of annealing on structural and magnetic properties of template synthesized cobalt nanowires useful as data storage and nano devices

  • Deepak Saini
  • R. P. Chauhan
  • Sanjeev Kumar
Article

Abstract

Cobalt nanowires of 100 nm diameter were synthesised electrochemically, in the pores of anodic alumina membrane (AAM). Electrochemical impedance spectroscopy was used to study the in situ growth of cobalt nanowires in the AAM. The structural and morphological characterization of template synthesized cobalt nanowires was done through X-ray diffractometer and scanning electron microscope, respectively. Effect of annealing on electrical and magnetic properties of cobalt nanowires was also investigated.

Keywords

Anodic Alumina Membrane Versus Behaviour Cobalt Metal Electrodeposition Time Local Discontinuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by Department of Science and Technology (DST), Govt. of India under Nano Mission scheme (sanction order no. SR/NM/NS-84/2008).

References

  1. 1.
    J. Topp, S. Mendach, D. Heitmann, M. Kostylev, D. Grundler, Phys. Rev. B 84, 214413 (2011)CrossRefGoogle Scholar
  2. 2.
    S.Y. Chou, M.S. Wei, P.R. Krauss, P.B. Fischer, J. Appl. Phys. 76, 6673 (1994)CrossRefGoogle Scholar
  3. 3.
    L. Carignan, V. Boucher, T. Kodera, C. Caloz, A. Yelon, D. M′enard, Appl. Phys. Lett. 95, 062504 (2009)CrossRefGoogle Scholar
  4. 4.
    D. Kaur, D.K. Pandya, S. Chaudhary, J. Electrochem. Soc. 159, D713 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Almasi Kashi, A. Ramazani, M. Ghaffari, V.B. Isfahani, J. Cryst. Growth 311, 4581 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Darques, A. Encinas, L. Vila, L. Piraux, J. Phys. D Appl. Phys. 37, 1411 (2004)CrossRefGoogle Scholar
  7. 7.
    M. Darques, L. Piraux, A. Encinas, P. Bayle-Guillemaud, A. Popa, U. Ebels, Appl. Phys. Lett. 86, 072508 (2005)CrossRefGoogle Scholar
  8. 8.
    Y. Ren, J. Wang, Q. Liu, Y. Dai, B. Zhang, L. Yan, J. Mater. Sci. 46, 7545 (2011)CrossRefGoogle Scholar
  9. 9.
    J.U. Cho, J.H. Wu, J.H. Min, S.P. Ko, J.Y. So, Q.X. Liu, Y.K. Kim, J. Magn. Magn. Mater. 303, e281 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Ge, C. Li, X. Ma, W. Li, L. Xi, C.X. Li, J. Appl. Phys. 90, 1 (2001)CrossRefGoogle Scholar
  11. 11.
    H. Schlorb, V. Haehnel, M.S. Khatri, A. Srivastav, A. Kumar, L. Schultz, S. Fahler, Phys. Stat. Solid B 247, 2364 (2010)CrossRefGoogle Scholar
  12. 12.
    A.F. Mayadas, M. Shatzkes, Phys. Rev. B 1, 1382 (1970)CrossRefGoogle Scholar
  13. 13.
    K. Fuchs, Proc. Camb. Phil. Soc. 34, 100 (1938)CrossRefGoogle Scholar
  14. 14.
    E.H. Sondheimer, Adv. Phys. 1, 1 (1952)CrossRefGoogle Scholar
  15. 15.
    S. Kumar, A. Vohra, S.K. Chakarvarti, Nanomater. Nanotechnol. 2, 1 (2012)Google Scholar
  16. 16.
    S. Kumar, D. Saini, G.S. Lotey, N.K. Verma, Superlattice Microstruct. 50, 698 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Kumar, D. Saini, Appl. Nanosci. 3, 101 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Kumar, D. Saini, J. Mater. Sci. Mater. Electron. 24, 1086 (2013)CrossRefGoogle Scholar
  19. 19.
    W. Li, Y. Peng, G.A. Jones, T.H. Shen, G. Hill, J. Appl. Phys. 97, 34308 (2005)CrossRefGoogle Scholar
  20. 20.
    E.C. Stoner, E.P. Wohlfarth, Proc. R. Soc. Lond. Ser. A 240, 559 (1948)Google Scholar
  21. 21.
    W. Chen, S.L. Tang, M. Lu, Y.W. Du, J. Phys. Condens. Mater. 15, 4623 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.University College of EngineeringPunjabi UniversityPatialaIndia
  2. 2.Department of PhysicsNational Institute of TechnologyKurukshetraIndia
  3. 3.Department of Applied SciencePEC University of TechnologyChandigarhIndia

Personalised recommendations