Electrical transport properties of layered structure bismuth oxide: Ba0.5Sr0.5Bi2V2O9

  • N. K. Mohanty
  • R. N. Pradhan
  • S. K. Satpathy
  • A. K. Behera
  • Banarji Behera
  • P. Nayak


The layered structure bismuth oxide, Ba0.5Sr0.5Bi2V2O9, was prepared using solid state reaction technique. Room temperature X-ray diffraction study confirms the formation of the material with an orthorhombic crystal structure. The temperature dependent impedance parameters were investigated using an impedance analyzer in a wide range of frequencies (102–106 Hz) at different temperatures. The Nyquist plots reveal the presence of both grain and grain boundary effect above 275 °C. The bulk resistance of the material decreases with rise in temperature which shows negative temperature coefficient resistance behavior like semiconductor. The variation of ac electrical conductivity (σac) was measured, and the activation energy of the material found to be 0.36, 0.33, 0.34, 0.31 eV at 10, 50, 100 and 500 kHz respectively. Ac conductivity data were used to evaluate the density of states at Fermi level. From the dynamic light scattering and electrophoretic light scattering study, it is observed that the particle show excellent aqueous dispersion stability without any change in hydrodynamic size and zeta potential.


Zeta Potential Dynamic Light Scattering Vanadium Pentoxide Solid State Reaction Technique High Frequency Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support through DRS-I of UGC under SAP for the development of research work at School of Physics, Sambalpur University.


  1. 1.
    B. Aurivillius, Ark. Kemi 1, 463–480 (1949)Google Scholar
  2. 2.
    E.C. Subbarao, J. Phys. Chem. Solids 23, 665–676 (1962)CrossRefGoogle Scholar
  3. 3.
    E.C. Subbarao, J. Am. Ceram. Soc. 45, 166–169 (1962)CrossRefGoogle Scholar
  4. 4.
    G.A. Smolenski, V.A. Isupov, A.I. Agranaskya, Sov. Phys. Solid State 3, 561 (1959)Google Scholar
  5. 5.
    S.E. Cummins, L.E. Cross, J. Appl. Phys. 39, 2268–2274 (1968)CrossRefGoogle Scholar
  6. 6.
    E.C. Subbarao, Phys. Rev. 122, 804–807 (1961)CrossRefGoogle Scholar
  7. 7.
    J.F. Scott, C.A.P. Araujo, Science 246, 1400–1405 (1989)CrossRefGoogle Scholar
  8. 8.
    O. Auciello, J.F. Scott, R. Ramesh, Phys. Today 51, 22–27 (1998)CrossRefGoogle Scholar
  9. 9.
    C.A.P. Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature 374, 627–629 (1995)CrossRefGoogle Scholar
  10. 10.
    K. Amanuma, T. Hase, Y. Miyasaka, Appl. Phys. Lett. 66, 221–223 (1995)CrossRefGoogle Scholar
  11. 11.
    Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Aswano, F. Izumi, Phys. Rev. B 61, 6559–6564 (2000)CrossRefGoogle Scholar
  12. 12.
    C. Miranda, M.E.V. Costa, M. Avdeev, A.L. Kholkin, J.L. Bapista, J. Eur. Ceram. Soc. 21, 1303–1306 (2001)CrossRefGoogle Scholar
  13. 13.
    B. Behera, E. Araujo, A.F. Junior, Adv. Appl. Ceram. 109, 1–5 (2010)CrossRefGoogle Scholar
  14. 14.
    W.J. Yu, Y.I. Kim, D.H. Ha, J.H. Lee, Y.K. Park, S. Seong, N.H. Hur, Solid State Commun. 111, 705–709 (1999)CrossRefGoogle Scholar
  15. 15.
    P. Goel, K.L. Yadav, Physica B 382, 245–251 (2006)CrossRefGoogle Scholar
  16. 16.
    C. Karthik, K.B.R. Verma, Mater. Sci. Eng. B 129, 2450–3250 (2006)CrossRefGoogle Scholar
  17. 17.
    B.H. Venkataraman, K.B.R. Varma, J. Mater. Sci. Mater. Electron. 16, 335–344 (2005)CrossRefGoogle Scholar
  18. 18.
    N.K. Mohanty, R.N. Pradhan, B. Behera, P. Nayak, Asian J. Phys. 21, 233–240 (2012)Google Scholar
  19. 19.
    P. Singh, A. Agarwal, S. Sanghi, R. Garg, S. Chhikara, Int. J. Eng. Res. Dev. 5, 9–18 (2013)Google Scholar
  20. 20.
    C.A. Rodrigues Jr, JMs Filho, P.M.O. Silva, M.A.S. Silva, C.C.M. Junqueira, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 24, 3467–3473 (2013)CrossRefGoogle Scholar
  21. 21.
    M. Roy, S. Sahu, J. Electroceram. (2013). doi: 10.1007/s10832-013-9838-4
  22. 22.
    E. Wu. POWD, An Interactive Powder Diffraction Data Interpretation and Indexing Program, Ver 2.2, (School of Physical Sciences, Flinders University, South Bedford Park, SA 5042, Australia, 1989) Google Scholar
  23. 23.
    P. Scherrer’s, Gottinger Nachrichten 2, 98–100 (1918)Google Scholar
  24. 24.
    M.J. Forbess, S. Seraji, Y. Wu, C.P. Nguyen, G.Z. Cao, Appl. Phys. Lett. 76, 2934–2936 (2000)CrossRefGoogle Scholar
  25. 25.
    Wu Yun, G.Z. Cao, Appl. Phys. Lett. 75, 2650–2652 (1999)CrossRefGoogle Scholar
  26. 26.
    S. Ezhilvalavan, J.M. Xue, J. Wang, J. Phys. D Appl. Phys. 35, 2254–2259 (2002)CrossRefGoogle Scholar
  27. 27.
    J.R. MacDonald, Impedance Spectroscopy (Wiley, New York, 1987)Google Scholar
  28. 28.
    T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)CrossRefGoogle Scholar
  29. 29.
    P. Dhak, D. Dhak, M. Das, P. Pramanik, J. Mater. Sci. Mater. Electron. 22, 1750–1760 (2011)CrossRefGoogle Scholar
  30. 30.
    C. Karthik, K.B.R. Varma, J. Phys. Chem. Solids 67, 2437–2441 (2006)CrossRefGoogle Scholar
  31. 31.
    D. Dhak, P. Dhak, P. Pramanik, Appl. Surf. Sci. 254, 3078–3092 (2008)CrossRefGoogle Scholar
  32. 32.
    Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, C. Nguyen, G.Z. Cao, J. Appl. Phys. 90(10), 5296–5302 (2001)CrossRefGoogle Scholar
  33. 33.
    A.K. Jonscher, Nature 267, 673–679 (1977)CrossRefGoogle Scholar
  34. 34.
    J. Grigas, Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials (Gordon and Breach Pub. Inc, Amsterdam, 1996)Google Scholar
  35. 35.
    I.G. Austin, N.F. Mott Adv, Phys 18(71), 41–102 (1969)Google Scholar
  36. 36.
    S. Bhagat, K. Prasad Phys, Status Solidi A 207(5), 1232–1239 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • N. K. Mohanty
    • 1
  • R. N. Pradhan
    • 1
  • S. K. Satpathy
    • 1
  • A. K. Behera
    • 1
  • Banarji Behera
    • 1
  • P. Nayak
    • 1
  1. 1.Material Research Laboratory, School of PhysicsSambalpur UniversitySambalpurIndia

Personalised recommendations