Skip to main content
Log in

Electrical transport properties of layered structure bismuth oxide: Ba0.5Sr0.5Bi2V2O9

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The layered structure bismuth oxide, Ba0.5Sr0.5Bi2V2O9, was prepared using solid state reaction technique. Room temperature X-ray diffraction study confirms the formation of the material with an orthorhombic crystal structure. The temperature dependent impedance parameters were investigated using an impedance analyzer in a wide range of frequencies (102–106 Hz) at different temperatures. The Nyquist plots reveal the presence of both grain and grain boundary effect above 275 °C. The bulk resistance of the material decreases with rise in temperature which shows negative temperature coefficient resistance behavior like semiconductor. The variation of ac electrical conductivity (σac) was measured, and the activation energy of the material found to be 0.36, 0.33, 0.34, 0.31 eV at 10, 50, 100 and 500 kHz respectively. Ac conductivity data were used to evaluate the density of states at Fermi level. From the dynamic light scattering and electrophoretic light scattering study, it is observed that the particle show excellent aqueous dispersion stability without any change in hydrodynamic size and zeta potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Aurivillius, Ark. Kemi 1, 463–480 (1949)

    Google Scholar 

  2. E.C. Subbarao, J. Phys. Chem. Solids 23, 665–676 (1962)

    Article  Google Scholar 

  3. E.C. Subbarao, J. Am. Ceram. Soc. 45, 166–169 (1962)

    Article  Google Scholar 

  4. G.A. Smolenski, V.A. Isupov, A.I. Agranaskya, Sov. Phys. Solid State 3, 561 (1959)

    Google Scholar 

  5. S.E. Cummins, L.E. Cross, J. Appl. Phys. 39, 2268–2274 (1968)

    Article  Google Scholar 

  6. E.C. Subbarao, Phys. Rev. 122, 804–807 (1961)

    Article  Google Scholar 

  7. J.F. Scott, C.A.P. Araujo, Science 246, 1400–1405 (1989)

    Article  Google Scholar 

  8. O. Auciello, J.F. Scott, R. Ramesh, Phys. Today 51, 22–27 (1998)

    Article  Google Scholar 

  9. C.A.P. Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature 374, 627–629 (1995)

    Article  Google Scholar 

  10. K. Amanuma, T. Hase, Y. Miyasaka, Appl. Phys. Lett. 66, 221–223 (1995)

    Article  Google Scholar 

  11. Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Aswano, F. Izumi, Phys. Rev. B 61, 6559–6564 (2000)

    Article  Google Scholar 

  12. C. Miranda, M.E.V. Costa, M. Avdeev, A.L. Kholkin, J.L. Bapista, J. Eur. Ceram. Soc. 21, 1303–1306 (2001)

    Article  Google Scholar 

  13. B. Behera, E. Araujo, A.F. Junior, Adv. Appl. Ceram. 109, 1–5 (2010)

    Article  Google Scholar 

  14. W.J. Yu, Y.I. Kim, D.H. Ha, J.H. Lee, Y.K. Park, S. Seong, N.H. Hur, Solid State Commun. 111, 705–709 (1999)

    Article  Google Scholar 

  15. P. Goel, K.L. Yadav, Physica B 382, 245–251 (2006)

    Article  Google Scholar 

  16. C. Karthik, K.B.R. Verma, Mater. Sci. Eng. B 129, 2450–3250 (2006)

    Article  Google Scholar 

  17. B.H. Venkataraman, K.B.R. Varma, J. Mater. Sci. Mater. Electron. 16, 335–344 (2005)

    Article  Google Scholar 

  18. N.K. Mohanty, R.N. Pradhan, B. Behera, P. Nayak, Asian J. Phys. 21, 233–240 (2012)

    Google Scholar 

  19. P. Singh, A. Agarwal, S. Sanghi, R. Garg, S. Chhikara, Int. J. Eng. Res. Dev. 5, 9–18 (2013)

    Google Scholar 

  20. C.A. Rodrigues Jr, JMs Filho, P.M.O. Silva, M.A.S. Silva, C.C.M. Junqueira, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 24, 3467–3473 (2013)

    Article  Google Scholar 

  21. M. Roy, S. Sahu, J. Electroceram. (2013). doi:10.1007/s10832-013-9838-4

  22. E. Wu. POWD, An Interactive Powder Diffraction Data Interpretation and Indexing Program, Ver 2.2, (School of Physical Sciences, Flinders University, South Bedford Park, SA 5042, Australia, 1989)

  23. P. Scherrer’s, Gottinger Nachrichten 2, 98–100 (1918)

    Google Scholar 

  24. M.J. Forbess, S. Seraji, Y. Wu, C.P. Nguyen, G.Z. Cao, Appl. Phys. Lett. 76, 2934–2936 (2000)

    Article  Google Scholar 

  25. Wu Yun, G.Z. Cao, Appl. Phys. Lett. 75, 2650–2652 (1999)

    Article  Google Scholar 

  26. S. Ezhilvalavan, J.M. Xue, J. Wang, J. Phys. D Appl. Phys. 35, 2254–2259 (2002)

    Article  Google Scholar 

  27. J.R. MacDonald, Impedance Spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  28. T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  Google Scholar 

  29. P. Dhak, D. Dhak, M. Das, P. Pramanik, J. Mater. Sci. Mater. Electron. 22, 1750–1760 (2011)

    Article  Google Scholar 

  30. C. Karthik, K.B.R. Varma, J. Phys. Chem. Solids 67, 2437–2441 (2006)

    Article  Google Scholar 

  31. D. Dhak, P. Dhak, P. Pramanik, Appl. Surf. Sci. 254, 3078–3092 (2008)

    Article  Google Scholar 

  32. Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, C. Nguyen, G.Z. Cao, J. Appl. Phys. 90(10), 5296–5302 (2001)

    Article  Google Scholar 

  33. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  Google Scholar 

  34. J. Grigas, Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials (Gordon and Breach Pub. Inc, Amsterdam, 1996)

    Google Scholar 

  35. I.G. Austin, N.F. Mott Adv, Phys 18(71), 41–102 (1969)

    Google Scholar 

  36. S. Bhagat, K. Prasad Phys, Status Solidi A 207(5), 1232–1239 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support through DRS-I of UGC under SAP for the development of research work at School of Physics, Sambalpur University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banarji Behera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohanty, N.K., Pradhan, R.N., Satpathy, S.K. et al. Electrical transport properties of layered structure bismuth oxide: Ba0.5Sr0.5Bi2V2O9 . J Mater Sci: Mater Electron 25, 117–123 (2014). https://doi.org/10.1007/s10854-013-1559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1559-6

Keywords

Navigation