Advertisement

CdBr2 nanocrystalline layers as nonlinear optical materials

  • K. J. Plucinski
  • G. Lakshminarayana
Article
  • 88 Downloads

Abstract

A new type of nanomaterial for optoelectronic is proposed. As such a material cleaved nanolayers of layered CdBr2 single crystals is chosen. A principal possibility to prepare thin hexagonal single crystalline layers of CdBr2 nanocrystals (possessing 6H polytype) with thickness up to several nanometers was shown. The studies of the optical absorption clearly show an occurrence of the blue spectral shift for the absorption edge up to 30 nm. During illumination by the 5 ns nitrogen laser at the wavelength at about 337 nm below the energy band gap it was established a substantial increase of the photoinduced absorption coefficient up to 25 cm−1 at pump power density equal to about 1 GW cm−2. The maximal photoinduced effect was observed for the thinnest film possessing thickness about 4 nm. The linear electrooptical effect was maximal at ambient temperature.

Keywords

Spectral Shift CdI2 CdBr2 Pump Power Density Photoinduced Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported in part by MTU through the Program PBS-814.

References

  1. 1.
    G. Aneshwar, G.C. Trigunayatg, Effect of growth conditions on the genesis of CdI2 polytypes. J. Solid State Chem. 15, 127–133 (1975)CrossRefGoogle Scholar
  2. 2.
    S.K. Chaudhary, G.C. Trigunayat, Polytypism in melt-grown crystals of CdI2, PbI2 and CdBr2. Acta Cryst. B43, 225–230 (1987)Google Scholar
  3. 3.
    K. Singh, G.C. Trigunayat, Melt growth of highly pure CdBr2 crystals and study of their polytypism. Phase Trans.: A Multinatl. J. 16, 324–326 (1989)Google Scholar
  4. 4.
    Y.O. Dovgii, I.V. Kityk, Antiresonances in the CdI2–4H and CdBr2–6R crystals fundamental spectra. Phys. Stat. Sol. 157 B, 473–479 (1990)Google Scholar
  5. 5.
    I.V. Kityk, Electrooptic effect in layered crystals of CdI2–4H. Phys. Crystallogr. 35, 458–459 (1990)Google Scholar
  6. 6.
    I.M. Bolesta, I.V. Kityk, R.M. Turchak, Nonlinear optical effects in CdI2–Cd crystals. Phys. Sol. State 36, 892–896 (1994)Google Scholar
  7. 7.
    Y.O. Dovgii, I.V. Kityk, Nonlinear optical effects in CdI2–4H crystals with centrosymmetric layers. Opt. Spectrosc. 70, 97–99 (1991)Google Scholar
  8. 8.
    I.M. Bolesta, I.V. Kityk, V.I. Kovalisko, Luminescence and nonlinear optical properties of Me–CdI2 (Me=Ag, Au) heterostructures. Phys. Sol. State 36, 1880–1882 (1994)Google Scholar
  9. 9.
    S.F.A. Kettle, A speculation concerning the origin of long-range crystallographic order in polytypic and related crystals. J. Crystallogr. Spectrosc. Res. 20, 59–67 (1990)CrossRefGoogle Scholar
  10. 10.
    R.E.M. Vickers, R.W.G. Syme, D.J. Lockwood, J. Phys. C: Solid State Phys. 18, 2419–2425 (2000)CrossRefGoogle Scholar
  11. 11.
    L. Chaudhary, Lead iodide crystals as input material for radiation detectors. Cryst. Struct. Theory Appl. 1, 21–24 (2012)Google Scholar
  12. 12.
    Y.O. Dovgii, I.V. Kityk, N.A. Rud, Optical functions and band energy structure of CdBr2. Inorg. Mater. 29, 543–565 (1985)Google Scholar
  13. 13.
    S. Bellucci, I. Bolesta, M. Cestelli Guidi, I. Karbovnyk, V. Lesivciv, F. Micciulla, R. Pastore, A.I. Popov, S. Velgosh, Cadmium clusters in CdI2 layered crystals: the influence on the optical properties. J. Phys.: Condens. Matter 19, 395015 (2007)CrossRefGoogle Scholar
  14. 14.
    R. Li, X. Zhang, D. Zhang, Y. Zhang, G. Xiang, Optical properties and quantum confinement in ultrafine single crystal silicon nanowires synthesized by thermal evaporation without catalyst. RSC Adv. 3, 15982–15986 (2013)CrossRefGoogle Scholar
  15. 15.
    V.A. Goncharov, Nonlinear optical response in solids from time-dependent density-functional theory simulations. J. Chem. Phys. 139, 084104 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Hamanaka, T. Ogawa, M. Tsuzuki, T. Kuzuya, K. Sumiyama, Resonant enhancement of third-order nonlinear optical susceptibilities of Cd-free chalcopyrite nanocrystals within quantum confinement regime. Appl. Phys. Lett. 103, 053116 (2013)CrossRefGoogle Scholar
  17. 17.
    Z. Zhu, Investigation of space charge trap levels in Al2O3 nano-powder doped polyethylene by photostimulated discharge method. Int. J. Mod. Phys. B 26, 1250140 (2012)CrossRefGoogle Scholar
  18. 18.
    O. Mys, V.T. Adamiv, I. Martunyuk-Lototska, R. Vlokh Ukr, Electrooptic effect in non-centrosymmetric CsLiB6O10 borate crystals. J. Opt. 8, 134–137 (2007)Google Scholar
  19. 19.
    Y. Yasuno, Y. Sutoh, S. Makita, M. Iton, T. Yatagai, Polarization sensitive spectral interferometric optical coherence tomography for biological samples. Opt. Rev. 10, 498–500 (2003)CrossRefGoogle Scholar
  20. 20.
    M.M. Benameur, B. Radisavljevic, J.S. Heron, S. Sahoo, H. Berger, A. Kis, Visibility of dichalcogenide nanolayers. Nanotechnology 22, 324 (2011)CrossRefGoogle Scholar
  21. 21.
    I.V. Kityk, Nonlinear optical phenomena in the large-sized nanocrystallites. J. Non-Cryst. Solids 292, 184–201 (2001)CrossRefGoogle Scholar
  22. 22.
    I.V. Kityk, Q. Liu, Z. Sun, J. Fang, Low-temperature anomalies of two-photon absorption in In2O3 nanocrystals incorporated into PMMA matrixes. J. Phys. Chem. B 110, 8219–8222 (2006)CrossRefGoogle Scholar
  23. 23.
    I. Fuks-Janczarek, I.V. Kityk, R. Miedzinski, E. Gondek, J. Ebothe, I. Nzoghe-Mendome, A. Danel, Push-pull benzoxazole based stilbenes as new promising electrooptics materials. J. Mater. Sci.:Mater. Electron. 18, 519–526 (2007)CrossRefGoogle Scholar
  24. 24.
    I. Fuks-Janczarek, R. Miedzinski, E. Gondek, P. Szlachcic, I.V. Kityk, Field-stimualted electrooptics in quinoline and stilbene chromophore derivatives incorporated into photopolymer thion films. J. Mater. Sci.: Mater. Electron. 19, 434–441 (2008)CrossRefGoogle Scholar
  25. 25.
    T. Kolev, B. Koleva, J. Kasperczyk, I. Kityk, S. Tkaczyk, M. Spiteler, A.H. Reshak, W. Kuznik, Novel nonlinear optical materials based on dihydropyridine organic chromophore deposited on mica substrate. J. Mater. Sci.: Mater. Electron. 20, 1073–1077 (2009)CrossRefGoogle Scholar
  26. 26.
    M. Idrish Miah, J. Kasperczyk, Cu-doping effects in CdI2 layered nanostructures: the role of photoinduced electron-phonon anharmonic interactions. Appl. Phys. Lett. 94, 053117 (2009)CrossRefGoogle Scholar
  27. 27.
    Y.O. Dovgii, I.V. Kityk, Specific features of absorption in the CdBr2. Ukr. Fizicheskii Zhurnal 29, 1092–1093 (1984)Google Scholar
  28. 28.
    O.T. Antonayk, I.V. Kityk, S.N. Pidzyrailo, Optics spectroscopy, electron-phonon interaction in SrCl2-Ce crystals. Opt. Spectrosc. 63, 311 (1987)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Electronic DepartmentMilitary University TechnologyWarsawPoland
  2. 2.Materials Science and Technology Division (MST-7)Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations