Skip to main content
Log in

Synthesis of SiOF nanoporous ultra low-k thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we have investigated the effect of annealing temperature on physical, chemical and electrical properties of Fluorine (F) incorporated porous SiO2 xerogel low-k films. The SiO2 xerogel thin films were prepared by sol–gel spin-on method using tetraethylorthosilicate as a source of Si. The hydrofluoric acid was used as a catalyst for the incorporation of F ion in the film matrix. The thickness and refractive index (RI) of the films were observed to be decreasing with increase in annealing temperature with minimum value 156 nm and 1.31 respectively for film annealed at 400 °C. Based on measured RI value, the 34 % porosity and 1.53 gm/cm3 density of the film annealed at 400 °C have been determined. The roughness of the films as a function of annealing temperature measured through AFM was found to be increased from 0.9 to 1.95 nm. The Electrical properties such as dielectric constant and leakage current density were evaluated with capacitance–voltage (C–V) and leakage current density–voltage (J–V) measurements of fabricated Al/SiO2 xerogel/P–Si metal–insulator-semiconductor (MIS) structure. Film annealed at 400 °C, was observed to be with the lowest dielectric constant value (k = 2) and with the lowest leakage current (3.4 × 10−8 A/cm2) with high dielectric breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akira Wada, Toru Sasaki, Shigeo Yasuhara and Seiji Samukawa, Japanese Journal of Applied Physics, 51, 05EC01-1 (2012)

  2. G.A. Antonelli, G. Jiang, R. Shaviv, T. Mountsier, G. Dixit, K.J. Park, I. Karim, W. Wu, H. Shobha, T. Spooner, E. Soda, E. Liniger, S. Cohen, J. Demarest, M. Tagami, O. Vander Straten, F. Baumann, Microelectron. Eng. 92, 9 (2012)

    Article  CAS  Google Scholar 

  3. K. Hamioud, V. Arnal, A. Farcy, V. Jousseaume, A. Zenasni, B. Icard, J. Pradelles, S. Manakli, Ph Brun, G. Imbert, C. Jayet, M. Assous, S. Maitrejean, D. Galpin, C. Monget, J. Guillan, S. Chhun, E. Richard, D. Barbier, M. Haond, Microelectron. Eng. 87(3), 316 (2010)

    Article  CAS  Google Scholar 

  4. Willi Volksen, Robert D. Miller, Geraud Dubois, Chem. Rev. 110, 56 (2010)

    Article  CAS  Google Scholar 

  5. Zhi-Wei He, Shi-Qiu Zhu, Sheng-Li Wang, Zheng Qi, Yu-Yuan Guan, Processing and Application of Ceramics 6(2), 97 (2012)

    Article  CAS  Google Scholar 

  6. He Zhi-Wei, Xu Da-Yin, Jiang Xiang-Hua, and Wang Yin-Yue, Chinese Physics B, 17(8), 3021 (2008)

  7. Richard F. Reidy, Future Fab International 23, 95 (2008)

    Google Scholar 

  8. David S. Jacob, Aharon Gedanken, J. Am. Ceram. Soc. 91(9), 3024 (2008)

    Article  CAS  Google Scholar 

  9. G. Chernev, B. Samuneva, P. Djambaski, European Journal of Glass Science and Technology Part A 46(2), 175 (2005)

    CAS  Google Scholar 

  10. Chien-Tsung Wang, Wu Chun-Lung, Thin Solid Films 496(2), 658 (2006)

    Article  CAS  Google Scholar 

  11. A. Soleimani Dorcheh, M.H. Abbasi, J. Mater. Process. Technol. 199, 10 (2008)

    Article  CAS  Google Scholar 

  12. Sang-Bae Jung, Jung-Ho Kim, Hong-Ryul Kim, Hyung-Ho Park, Microelectron. Eng. 65, 113 (2003)

    Article  Google Scholar 

  13. Carlos Folgar, Diane Folz, Carlos Suchicital, David Clark, Journal of Nano-crystalline Solids 353, 148 (2007)

    Google Scholar 

  14. Jung-Ho Kim Sang-Baejung, Hong-Ryul Kim, Hyung-Ho Park, Microelectron. Eng. 65, 113 (2003)

    Article  Google Scholar 

  15. E. Anulekha Manjari, A. Subrahmanyam, N. DasGupta, A. DasGupta, Appl. Phys. Lett. 80(10), 1800 (2002)

    Article  Google Scholar 

  16. S.M. Attia, Jue WANG, Guangming WU, Jun SHEN, Jianhua MA, J. Mater. Sci. Technol. 8(3), 211 (2002)

    Google Scholar 

  17. W.L. Warren, P.M. Lenahan, C.J. Brinker, C.S. Ashley, S.T. Reed, G.R. Shaffer, J. Appl. Phys. 69(8), 4404 (1991)

    Article  CAS  Google Scholar 

  18. Bhavana N. Joshi, Ashok M. Mahajan, Mater. Sci. Eng. B 168, 182 (2010)

    Article  CAS  Google Scholar 

  19. K. Maex, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma, Z.S. Yanovitskaya, J. Appl. Phys. 93(11), 8793 (2003)

    Article  CAS  Google Scholar 

  20. C. Himcinschi, M. Friedrich, C. Murray, I. Streiter, S.E. Schulz, T. Gessner, D.R.T. Zahn, Semicond. Sci. Technol. 16, 806 (2001)

    Article  CAS  Google Scholar 

  21. Chang Young Kim, R. Navamathvan, Heon Ju Lee and Chi Kyu Choi, Surface & Coating Technology, 202, 5688 (2008)

  22. Moon-Ho Jo, Jung-Kyun Hong, Hyung-Ho Park, Joong-Jung Kim, Sang-Hoon Hyun, Se-Young Choi, Thin Solid Films 308–309, 490 (2004)

    Google Scholar 

  23. Woei Chang Ee, Kuan Yew Cheong, Physica B, 403, 611 (2008)

  24. Seok-Joo Wang, Hyung-Ho Park, Geun-Young Yeom, Sang-Hoon Hyun, Appl. Surf. Sci. 169–170, 457 (2001)

    Article  Google Scholar 

  25. Sang-Ki Kwak, Ki-Hun Jeong, Shi-Woo Rhee, J. Electrochem. Soc. 151(2), F11 (2004)

    Article  CAS  Google Scholar 

  26. Chang-Sic Kim, Hyun-Dam Jeong, J. Phys. Chem. B letters 112(51), 16257 (2008)

    Article  CAS  Google Scholar 

  27. Y. Uchida, S. Hishiya, N. Fujii, K. Kohmura, T. Nakayama, H. Tanaka, T. Kikkawa, Microelectron. Eng. 83, 2126 (2006)

    Article  CAS  Google Scholar 

  28. Bhavana N. Joshi, A.M. Mahajan, Optoelectronics and Advanced Materials-Rapid Communication 1(12), 659 (2007)

    CAS  Google Scholar 

  29. Ching-Yuan Ting, Hwo-shuenn Sheu, Wen-Fa wu, Ben-Zu Wan, J Electrochem Soc 154(1), G1 (2007)

    Article  CAS  Google Scholar 

  30. Yosuke Kimura, Dai Ishikawa, Akinori Nakano, Akiko Kobayashi, Kiyohiro Matsushita, David de Roest and Nobuyoshi Kobayashi, Japanese Journal of Applied Physics, 51, 05EC04-1 (2012)

Download references

Acknowledgments

Authors would like to acknowledge with thanks the financial assistance provided by CSIR, New Delhi to carrry out this work (vide letter No.03(1127)/28/EMR-II). Authors are also grateful to the Center of Excellence in Nanoelectronics (CEN), IITB (under IIT INUP at IITB which have been sponsored by DIT, MCIT, and Government of India) is also being acknowledged for providing the facility of electrical characterization during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok M. Mahajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mhaisagar, Y.S., Mahajan, A.M. Synthesis of SiOF nanoporous ultra low-k thin film. J Mater Sci: Mater Electron 24, 4964–4969 (2013). https://doi.org/10.1007/s10854-013-1508-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1508-4

Keywords

Navigation