Magnetoelectric effect in square FeCo/PMN-PT/FeCo trilayer prepared by electroless deposition



A multiferroic square FeCo/PMN-PT/FeCo trilayer has been constructed by electroless depositing. Scanning electron microscopy reveals that the magnetostrictive FeCo layers are in direct contact with the piezoelectric single crystal PMN-PT substrates. It is shown that electroless deposition is an effective way to deposit films on single crystal PMN-PT. Thanks to the excellent piezoelectric performance, the composite adapting PMN-PT as piezoelectric phase possess a higher magnetoelectric coefficient than that of traditional PZT piezoelectric ceramics with the same configuration. For the square FeCo/PMN-PT/FeCo sample, six obvious resonance peaks can be observed in the dependence of the magnetoelectric coefficient on the magnetic field frequency due to the complex vibration mode, which makes this structure suitable for applications in multifunctional devices with multifrequency operation.


Resonance Peak Electroless Deposition Magnetic Field Frequency Bias Magnetic Field Piezoelectric Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the Natural Science Foundation of China (Grant 11174148).


  1. 1.
    G. Srinivasan, C.P. DeVreugd, C.S. Flattery, V.M. Laletsin, N. Paddubnaya, Appl. Phys. Lett. 85, 2550 (2004)CrossRefGoogle Scholar
  2. 2.
    J. Van Suchtelen, Philips Res. Rep. 27, 28 (1972)Google Scholar
  3. 3.
    J.L. Chen, Z. Xu, J. Mater. Sci. Mater. Electron 21, 456 (2010)CrossRefGoogle Scholar
  4. 4.
    V.E. Wood, A.E. Austin, Int. J. Magn. 5, 303 (1973)Google Scholar
  5. 5.
    D.R. Patil, B.K. Chougule, J. Mater, Sci. Mater. Electron 20, 398 (2009)CrossRefGoogle Scholar
  6. 6.
    R. Hornreich, S. Shtrikman, Phys. Rev. 161, 506 (1967)CrossRefGoogle Scholar
  7. 7.
    K. Bi, Y.G. Wang, D.A. Pan, W. Wu, Scr. Mater. 63, 589 (2010)CrossRefGoogle Scholar
  8. 8.
    D.A. Pan, Y. Bai, W.Y. Chu, L.J. Qiao, J. Phys. D Appl. Phys. 41, 022002 (2008)CrossRefGoogle Scholar
  9. 9.
    D.X. Zhou, L.B. Hao, S.P. Gong, Q.Y. Fu, F. Xue, G. Jian, J. Mater. Sci. Mater. Electron 23, 2098 (2012)CrossRefGoogle Scholar
  10. 10.
    S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 83, 2265 (2003)CrossRefGoogle Scholar
  11. 11.
    C.W. Nan, G. Liu, Y.H. Lin, Appl. Phys. Lett. 83, 4366 (2003)CrossRefGoogle Scholar
  12. 12.
    L. Chen, P. Li, Y.M. Wen, D. Wang, J. Alloy. Compd. 509, 4811 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Ma, Z. Shi, C.W. Nan, Adv. Mater. 19, 2571 (2007)CrossRefGoogle Scholar
  14. 14.
    M.Y. Teferi, V.S. Amaral, A.C. Lounrenco, S. Das, J.S. Amaral, D.V. Karpinsky, N. Soares, N.A. Sobolev, A.L. Kholkin, P.B. Tavares, J. Magn. Magn. Mater. 324, 1882 (2012)CrossRefGoogle Scholar
  15. 15.
    C. Thiele, K. Dorr, O. Bilani, J. Rodel, L. Schultz, Phys. Rev. B Condens. Matter 75, 054408 (2007)CrossRefGoogle Scholar
  16. 16.
    R.K. Zheng, Y. Wang, H.U. Habermeier, H.L.W. Chan, X.M. Li, H.S. Luo, J. Alloy. Compd. 519, 77 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Dan, S. Madhana, K. Lakshmi, T. Alexander, P.D. Moran, J. Cryst. Growth 311, 3235 (2009)CrossRefGoogle Scholar
  18. 18.
    H. Hong, K. Bi, Y.G. Wang, J. Alloy. Compd. 545, 182 (2012)CrossRefGoogle Scholar
  19. 19.
    J.G. Wan, Z.Y. Li, Y. Wang, M. Zeng, G.H. Wang, J.M. Liu, Appl. Phys. Lett. 86, 202504 (2005)CrossRefGoogle Scholar
  20. 20.
    K. Bi, Y.G. Wang, W. Wu, Sens. Actuators A 166, 48 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations