Advertisement

Surfactant assisted synthesis and multifunctional features of Fe3O4@ZnO@SiO2 core–shell nanostructure

  • N. Selvi
  • S. Sankar
  • K. Dinakaran
Article

Abstract

In this study, hybrid core–shell magnetic nanostructure comprising Fe3O4 core with multiple shells of zinc oxide and silica having well defined morphologies are produced by a simple synthetic approach based on an effective chemical precipitation technique. Semi-solid and hydrophilic poly ethylene glycol was used as the stabilizing agent to control the particle size of the magnetic nanostructures. 1-Hexadecyltrimethyl ammonium chloride was employed as the surfactant to achieve the core–shell nanostructure. The formation of the core–shell nanostructures were confirmed by X-ray diffraction, Fourier transform infra-red spectroscopy and high resolution transmission electron microscopy respectively. We also observed the pronounced ferromagnetic features of ZnO coated Fe3O4 core–shell nanostructure that substantiates the magnetization reversal mechanism of the spinel magnetite. The coating of dense SiO2 on Fe3O4@ZnO was found to shift the magnetic behaviour from ferromagnetic to super-paramagnetic even at room temperature. The optical features of the material are observed by UV–Vis Spectrometer and Photoluminescence spectrometer.

Keywords

Fe3O4 Magnetite Poly Ethylene Glycol Tetra Ethyl Ortho Silicate Pure Fe3O4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    X.F. Zhang, S. Mansouri, L. Clime, H.Q. Ly, L.H. Yahiac, T. Veres, J. Mater. Chem. 22, 14450 (2012)CrossRefGoogle Scholar
  2. 2.
    M.I. Majeed, Q. Lu, W. Yan, Z. Li, I. Hussain, M.N. Tahir, W. Tremele, B. Tan, J. Mater. Chem. B 1, 2874 (2013)CrossRefGoogle Scholar
  3. 3.
    Y. Zhu, Y. Fang, S. Kaskel, J. Phys. Chem. C 114, 6382–16388 (2010)Google Scholar
  4. 4.
    D.-L. Zhao, P. Teng, X. Ying, Q.-S. Xia, J.-T. Tang, J. Alloy. Compd. 502, 392–395 (2010)CrossRefGoogle Scholar
  5. 5.
    M.E. Khosroshahi, L. Ghazanfari, Z. Hasan-Nejad, Iran. J. Med. Phys. 9(4), 253–263 (2012)Google Scholar
  6. 6.
    P. Yi, G. Chen, H. Zhang, F. Tian, B. Tan, J. Dai, Biomaterials 34, 1–10 (2013)Google Scholar
  7. 7.
    J. Shi, D. Liu, L. Tong, X. Yang, H. Yang, J. Alloy. Compd. 509, 10211–10216 (2011)CrossRefGoogle Scholar
  8. 8.
    S.-H. Chen, Z. Yin, S.-L. Luo, A. Chak-Tong, X.-J. Li, Mater. Res. Bull. 48, 725–729 (2013)CrossRefGoogle Scholar
  9. 9.
    Y. Liu, L. Yu, Y. Hu, C. Guo, F. Zhanga, X.W.D. Lou, Nanoscale 4, 183 (2012)CrossRefGoogle Scholar
  10. 10.
    D.K. Nagesha, B.D. Plouffe, M. Phan, L.H. Lewis, S. Sridhar et al., J. Appl. Phys. 105, 07B317 (2009)CrossRefGoogle Scholar
  11. 11.
    L. Wang, Y. Sun, J. Wang, J. Wang, A. Yu, H. Zhang, D. Song, Colloids Surf. B 84, 484–490 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Qiu, H. Peng, R. Liang, Electrochem. Commun. 9, 2734 (2007)CrossRefGoogle Scholar
  13. 13.
    E. Lima, A.L. Brandl, A.D. Arelaro, G.F. Goya, J. Appl. Phys. 99, 083908 (2006)CrossRefGoogle Scholar
  14. 14.
    D. Tripathy, A.O. Adeyeye, J. Appl. Phys. 105, 09J505 (2007)CrossRefGoogle Scholar
  15. 15.
    M. Paul, D. Kufer, A. Müller, S. Brück, E. Goering, M. Kamp, J. Verbeeck, H. Tian, G. Van Tendeloo, N.J.C. Ingle, M. Sing, R. Claessen, Appl. Phys. Lett. 98, 01251 (2011)Google Scholar
  16. 16.
    H.L. Liu, J.H. Wu, J.H. Min, X.Y. Zhang, Y.K. Kim, Mater. Res. Bull. 48, 551–558 (2013)CrossRefGoogle Scholar
  17. 17.
    T. Yao, T. Cui, K. Sun, J. Wu, Q. Chen, X. Yin, F. Cui, Carbon 5, 2287–2295 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Wei, Q. Wang, J. Zhu, L. Sun, H. Line, Z. Guo, Nanoscale 3, 4474–4502 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Wan, H. Li, K. Chen, Mater. Chem. Phys. 114, 30–32 (2009)CrossRefGoogle Scholar
  20. 20.
    D.M. Fouad, M.B. Mohamed, J. Nanotechnol. Volume 2011, Article ID 416060, p. 7 (2011)Google Scholar
  21. 21.
    M. Zhang, Z. Zhang, Y. Liu, X. Yang, L. Luo, J. Chen, S. Yao, Chem. Eng. J. 178, 443–450 (2011)CrossRefGoogle Scholar
  22. 22.
    X. Zhang, H. Niu, Y. Pan, Y. Shi, Y. Cai, J. Colloid Interface Sci. 362, 107–112 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Singh, K.C. Barick, D. Bahadur, J. Mater. Chem. A 1, 3325–3333 (2013)CrossRefGoogle Scholar
  24. 24.
    E. Wassanayantasee, W. Cynthial, S. Thanapon Sangvanich, R.S. Addleman, T.G. Carter, R.J. Wiacek, G.E. Fryxell, C. Timchalk, M.G. Warner, Environ. Sci. Technol 41, 5114–5119 (2007)CrossRefGoogle Scholar
  25. 25.
    A. Khodabakhshi, M.M. Amin, M. Mozaffari, Iran. J. Environ. Health. Sci. Eng. 8(3), 189–200 (2011)Google Scholar
  26. 26.
    C.L. Warner, R.S. Addleman, A.D. Cinson, T.C. Droubay, M.H. Engelhard, M.A. Nash, W. Yantasee, M.G. Warner, Chem. Sus. Chem. 1002, 1–10 (2010)Google Scholar
  27. 27.
    Z. Teng, S. Xiaodan, G. Chen, C. Tian, H. Li, L. Ai, L. Guangming, Colloids Surf. A Physicochem. Eng. Asp. 402, 60–65 (2012)CrossRefGoogle Scholar
  28. 28.
    L. Ping, J.-L. Zhang, Y.-L. Liu, D.-H. Sun, G.-X. Liu, G.-Y. Hong, J.-Z. Ni, Talanta 82, 450–457 (2010)CrossRefGoogle Scholar
  29. 29.
    J. Wang, S. Zheng, Y. Shao, J. Liu, X. Zhaoyi, D. Zhu, J. Colloid Interface Sci. 349, 293–299 (2010)CrossRefGoogle Scholar
  30. 30.
    S. Thomas, D. Sakthikumar, Y. Yoshida, M.R. Anantharaman, J. Nanopart. Res. 10, 203–206 (2008)CrossRefGoogle Scholar
  31. 31.
    J.C.B. Huarac, M.S. Tomar, S.P. Singh, O. Pearls-Perez, L. Rivera, S. Pena, NSTI-Nanotechnol. 3, 405–408 (2010)Google Scholar
  32. 32.
    K.H. Choi, W.S. Chae, E.M. Kim, J.H. Jun, J. Hyung, Y.R. Kim, J.S. Jung, IEEE Trans. Magn. 47, 1–4 (2011)CrossRefGoogle Scholar
  33. 33.
    B.Y. Geng, J.Z. Ma, X.W. Liu, Q.B. Du, M.G. Kong et al., Appl. Phys. Lett. 90, 043120 (2007)CrossRefGoogle Scholar
  34. 34.
    X. Cao, R. Prozorov, Yu. Koltypin, G. Kataby Felner, A. Gedanken, J. Mater. Res. 12(2), 402–406 (1997)CrossRefGoogle Scholar
  35. 35.
    M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, N. Gu, J. Magn. Magn. Mater. 268, 33–39 (2004)CrossRefGoogle Scholar
  36. 36.
    S.V. Komogortsev, R.S. Iskhakov, Phys. Solid State 47, 495–501 (2005)CrossRefGoogle Scholar
  37. 37.
    K.M. Kant, K. Sethupathi, M.S.R. Rao, J. Appl. Phys. 103, 07F318 (2008)CrossRefGoogle Scholar
  38. 38.
    S.Z. Mohammadi, T. Shamspur, M.A. Karimi, E. Naroui, Scient. World J. 2012, 640437 (2012). doi: 10.1100/2012/640437

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Condensed Matter Lab, Department of PhysicsAnna UniversityChennaiIndia
  2. 2.Department of ChemistryAnna UniversityChennaiIndia

Personalised recommendations