Skip to main content
Log in

Surfactant assisted synthesis and multifunctional features of Fe3O4@ZnO@SiO2 core–shell nanostructure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, hybrid core–shell magnetic nanostructure comprising Fe3O4 core with multiple shells of zinc oxide and silica having well defined morphologies are produced by a simple synthetic approach based on an effective chemical precipitation technique. Semi-solid and hydrophilic poly ethylene glycol was used as the stabilizing agent to control the particle size of the magnetic nanostructures. 1-Hexadecyltrimethyl ammonium chloride was employed as the surfactant to achieve the core–shell nanostructure. The formation of the core–shell nanostructures were confirmed by X-ray diffraction, Fourier transform infra-red spectroscopy and high resolution transmission electron microscopy respectively. We also observed the pronounced ferromagnetic features of ZnO coated Fe3O4 core–shell nanostructure that substantiates the magnetization reversal mechanism of the spinel magnetite. The coating of dense SiO2 on Fe3O4@ZnO was found to shift the magnetic behaviour from ferromagnetic to super-paramagnetic even at room temperature. The optical features of the material are observed by UV–Vis Spectrometer and Photoluminescence spectrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.F. Zhang, S. Mansouri, L. Clime, H.Q. Ly, L.H. Yahiac, T. Veres, J. Mater. Chem. 22, 14450 (2012)

    Article  CAS  Google Scholar 

  2. M.I. Majeed, Q. Lu, W. Yan, Z. Li, I. Hussain, M.N. Tahir, W. Tremele, B. Tan, J. Mater. Chem. B 1, 2874 (2013)

    Article  CAS  Google Scholar 

  3. Y. Zhu, Y. Fang, S. Kaskel, J. Phys. Chem. C 114, 6382–16388 (2010)

    Google Scholar 

  4. D.-L. Zhao, P. Teng, X. Ying, Q.-S. Xia, J.-T. Tang, J. Alloy. Compd. 502, 392–395 (2010)

    Article  CAS  Google Scholar 

  5. M.E. Khosroshahi, L. Ghazanfari, Z. Hasan-Nejad, Iran. J. Med. Phys. 9(4), 253–263 (2012)

    Google Scholar 

  6. P. Yi, G. Chen, H. Zhang, F. Tian, B. Tan, J. Dai, Biomaterials 34, 1–10 (2013)

    Google Scholar 

  7. J. Shi, D. Liu, L. Tong, X. Yang, H. Yang, J. Alloy. Compd. 509, 10211–10216 (2011)

    Article  CAS  Google Scholar 

  8. S.-H. Chen, Z. Yin, S.-L. Luo, A. Chak-Tong, X.-J. Li, Mater. Res. Bull. 48, 725–729 (2013)

    Article  CAS  Google Scholar 

  9. Y. Liu, L. Yu, Y. Hu, C. Guo, F. Zhanga, X.W.D. Lou, Nanoscale 4, 183 (2012)

    Article  CAS  Google Scholar 

  10. D.K. Nagesha, B.D. Plouffe, M. Phan, L.H. Lewis, S. Sridhar et al., J. Appl. Phys. 105, 07B317 (2009)

    Article  Google Scholar 

  11. L. Wang, Y. Sun, J. Wang, J. Wang, A. Yu, H. Zhang, D. Song, Colloids Surf. B 84, 484–490 (2011)

    Article  CAS  Google Scholar 

  12. J. Qiu, H. Peng, R. Liang, Electrochem. Commun. 9, 2734 (2007)

    Article  CAS  Google Scholar 

  13. E. Lima, A.L. Brandl, A.D. Arelaro, G.F. Goya, J. Appl. Phys. 99, 083908 (2006)

    Article  Google Scholar 

  14. D. Tripathy, A.O. Adeyeye, J. Appl. Phys. 105, 09J505 (2007)

    Article  Google Scholar 

  15. M. Paul, D. Kufer, A. Müller, S. Brück, E. Goering, M. Kamp, J. Verbeeck, H. Tian, G. Van Tendeloo, N.J.C. Ingle, M. Sing, R. Claessen, Appl. Phys. Lett. 98, 01251 (2011)

    Google Scholar 

  16. H.L. Liu, J.H. Wu, J.H. Min, X.Y. Zhang, Y.K. Kim, Mater. Res. Bull. 48, 551–558 (2013)

    Article  CAS  Google Scholar 

  17. T. Yao, T. Cui, K. Sun, J. Wu, Q. Chen, X. Yin, F. Cui, Carbon 5, 2287–2295 (2012)

    Article  Google Scholar 

  18. S. Wei, Q. Wang, J. Zhu, L. Sun, H. Line, Z. Guo, Nanoscale 3, 4474–4502 (2011)

    Article  CAS  Google Scholar 

  19. J. Wan, H. Li, K. Chen, Mater. Chem. Phys. 114, 30–32 (2009)

    Article  CAS  Google Scholar 

  20. D.M. Fouad, M.B. Mohamed, J. Nanotechnol. Volume 2011, Article ID 416060, p. 7 (2011)

  21. M. Zhang, Z. Zhang, Y. Liu, X. Yang, L. Luo, J. Chen, S. Yao, Chem. Eng. J. 178, 443–450 (2011)

    Article  CAS  Google Scholar 

  22. X. Zhang, H. Niu, Y. Pan, Y. Shi, Y. Cai, J. Colloid Interface Sci. 362, 107–112 (2011)

    Article  CAS  Google Scholar 

  23. S. Singh, K.C. Barick, D. Bahadur, J. Mater. Chem. A 1, 3325–3333 (2013)

    Article  CAS  Google Scholar 

  24. E. Wassanayantasee, W. Cynthial, S. Thanapon Sangvanich, R.S. Addleman, T.G. Carter, R.J. Wiacek, G.E. Fryxell, C. Timchalk, M.G. Warner, Environ. Sci. Technol 41, 5114–5119 (2007)

    Article  Google Scholar 

  25. A. Khodabakhshi, M.M. Amin, M. Mozaffari, Iran. J. Environ. Health. Sci. Eng. 8(3), 189–200 (2011)

    CAS  Google Scholar 

  26. C.L. Warner, R.S. Addleman, A.D. Cinson, T.C. Droubay, M.H. Engelhard, M.A. Nash, W. Yantasee, M.G. Warner, Chem. Sus. Chem. 1002, 1–10 (2010)

    Google Scholar 

  27. Z. Teng, S. Xiaodan, G. Chen, C. Tian, H. Li, L. Ai, L. Guangming, Colloids Surf. A Physicochem. Eng. Asp. 402, 60–65 (2012)

    Article  CAS  Google Scholar 

  28. L. Ping, J.-L. Zhang, Y.-L. Liu, D.-H. Sun, G.-X. Liu, G.-Y. Hong, J.-Z. Ni, Talanta 82, 450–457 (2010)

    Article  Google Scholar 

  29. J. Wang, S. Zheng, Y. Shao, J. Liu, X. Zhaoyi, D. Zhu, J. Colloid Interface Sci. 349, 293–299 (2010)

    Article  CAS  Google Scholar 

  30. S. Thomas, D. Sakthikumar, Y. Yoshida, M.R. Anantharaman, J. Nanopart. Res. 10, 203–206 (2008)

    Article  CAS  Google Scholar 

  31. J.C.B. Huarac, M.S. Tomar, S.P. Singh, O. Pearls-Perez, L. Rivera, S. Pena, NSTI-Nanotechnol. 3, 405–408 (2010)

    CAS  Google Scholar 

  32. K.H. Choi, W.S. Chae, E.M. Kim, J.H. Jun, J. Hyung, Y.R. Kim, J.S. Jung, IEEE Trans. Magn. 47, 1–4 (2011)

    Article  Google Scholar 

  33. B.Y. Geng, J.Z. Ma, X.W. Liu, Q.B. Du, M.G. Kong et al., Appl. Phys. Lett. 90, 043120 (2007)

    Article  Google Scholar 

  34. X. Cao, R. Prozorov, Yu. Koltypin, G. Kataby Felner, A. Gedanken, J. Mater. Res. 12(2), 402–406 (1997)

    Article  CAS  Google Scholar 

  35. M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, N. Gu, J. Magn. Magn. Mater. 268, 33–39 (2004)

    Article  CAS  Google Scholar 

  36. S.V. Komogortsev, R.S. Iskhakov, Phys. Solid State 47, 495–501 (2005)

    Article  CAS  Google Scholar 

  37. K.M. Kant, K. Sethupathi, M.S.R. Rao, J. Appl. Phys. 103, 07F318 (2008)

    Article  Google Scholar 

  38. S.Z. Mohammadi, T. Shamspur, M.A. Karimi, E. Naroui, Scient. World J. 2012, 640437 (2012). doi:10.1100/2012/640437

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Selvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvi, N., Sankar, S. & Dinakaran, K. Surfactant assisted synthesis and multifunctional features of Fe3O4@ZnO@SiO2 core–shell nanostructure. J Mater Sci: Mater Electron 24, 4873–4880 (2013). https://doi.org/10.1007/s10854-013-1491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1491-9

Keywords

Navigation