Effect of annealing temperature on the energy transfer in Eu-doped ZnO nanoparticles by chemical precipitation method

  • Jihui Lang
  • Qiang Han
  • Xue Li
  • Songsong Xu
  • Jinghai Yang
  • Lili Yang
  • Yongsheng Yan
  • Xiuyan Li
  • Yingrui Sui
  • Xiaoyan Liu
  • Jian Cao
  • Jian Wang


Eu-doped ZnO nanoparticles were synthesized by the chemical precipitation method and the annealing temperature effect on the structures and photoluminescence (PL) properties of the nanoparticles were briefly investigated. The X-ray diffraction and energy dispersive spectroscopy results indicated that the Eu3+ was successfully incorporated into the crystal lattice of ZnO host when the annealing temperature was fixed at 400 °C, but the Eu3+ ions were partly precipitated from the host with the annealing temperature increasing. The as-obtained ZnO: Eu nanocrystals composed of nanoparticles had an average size of 10 nm, and the valence states of europium ions in the nanocrystals were determined as tervalent. PL spectroscopy indicated that the characteristic red emissions of Eu3+ ions were attributed to the 5D0 → 7F0, 5D0 → 7F1 and 5D0 → 7F2 transitions, respectively. Moreover, the annealing temperature was found to have effect on the red emission of Eu3+ ions. That is to say, the energy transfer in the doped nanocrystals could be adjusted by different annealing temperatures.


Annealing Temperature Increase Energy Dispersion Spectrum Chemical Precipitation Method Zinc Nitrate Hexahydrate Defect Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the National Natural Science Foundation of China (Grant Nos. 61178074 and 61008051), Program for the development of Science and Technology of Jilin province (Item No. 20100113), the Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province (Item No. 20120174 and 20110169), Natural Science Foundation of Jiangsu province (Item No.BK2011513) and the Open Project Program for National Laboratory of Superhard Materials (No. 201004).


  1. 1.
    M.H. Huang, S. Mao, H. Feick, H. Yang, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)CrossRefGoogle Scholar
  2. 2.
    Z. Zang, A. Nakamura, J. Temmyo, Opt. Express 21, 11448 (2013)CrossRefGoogle Scholar
  3. 3.
    A.T. Marin, D. Muñoz-Rojas, D.C. Iza, T. Gershon, K.P. Musselman, J.L. MacManus-Driscoll, Adv. Funct. Mater. 23, 3413 (2013)CrossRefGoogle Scholar
  4. 4.
    L. Hu, J. Yan, M. Liao, H. Xiang, X. Gong, L. Zhang, X. Fang, Adv. Mater. 24, 2305 (2012)CrossRefGoogle Scholar
  5. 5.
    Y.J. Kim, H. Yoo, C.H. Lee, J.B. Park, H. Baek, M. Kim, G.C. Yi, Adv. Mater. 24, 5565 (2012)CrossRefGoogle Scholar
  6. 6.
    Y. Wei, C. Xu, S. Xu, C. Li, W. Wu, Z.L. Wang, Nano Lett. 10, 2092 (2010)CrossRefGoogle Scholar
  7. 7.
    G. Zhu, Y. Zhou, S. Wang, R. Yang, Y. Ding, X. Wang, Y. Bando, Z. Wang, Nanotechnology 23, 055604 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Yang, J. Lang, L. Yang, L. Yang, Y. Zhang, D. Wang, H. Fan, H. Liu, Y. Wang, M. Gao, J. Alloys Compd. 450, 521 (2008)CrossRefGoogle Scholar
  9. 9.
    J. Lang, X. Li, J. Yang, Q. Han, Y. Yan, M. Gao, D. Wang, L. Yang, X. Liu, R. Wang, S. Yang, Cryst. Res. Technol. 46, 691 (2011)CrossRefGoogle Scholar
  10. 10.
    L.L. Yang, Q.X. Zhao, M. Willander, J. Appl. Phys. 105, 053503 (2009)CrossRefGoogle Scholar
  11. 11.
    J. Yang, J. Cao, L. Yang, M. Wei, B. Feng, D. Han, L. Fan, B. Wang, H. Fu, J. Appl. Phys. 112, 014316 (2012)CrossRefGoogle Scholar
  12. 12.
    J. Lang, Q. Han, J. Yang, C. Li, X. Li, L. Yang, D. Wang, H. Zhai, M. Gao, Y. Zhang, X. Liu, M. Wei, Appl. Surf. Sci. 256, 3365 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Yang, J. Cao, L. Yang, Y. Zhang, Y. Wang, X. Liu, D. Wang, M. Wei, M. Gao, J. Lang, J. Appl. Phys. 108, 044304 (2010)CrossRefGoogle Scholar
  14. 14.
    H. Liu, J. Yang, Z. Hua, Y. Liu, L. Yang, Y. Zhang, J. Cao, Mater. Chem. Phys. 125, 656 (2011)CrossRefGoogle Scholar
  15. 15.
    J.H. Yang, Y. Cheng, Y. Liu, X. Ding, Y.X. Wang, Y.J. Zhang, H.L. Liu, Solid State Commun. 149, 1164 (2009)CrossRefGoogle Scholar
  16. 16.
    D. Djouadi, A. Chelouche, A. Aksas, J. Mater. Environ. Sci. 3, 585 (2012)Google Scholar
  17. 17.
    G.R. Remya, D.B. Dhwajam, J.K. Thomas, S. Solomon, A. John, J. Mater. Sci. Mater. Electron. 23, 370 (2012)CrossRefGoogle Scholar
  18. 18.
    D. Wang, G. Xing, M. Gao, L. Yang, Jinghai Yang, T. Wu, J. Phys. Chem. C 115, 22729 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Gao, J. Yang, L. Yang, Y. Zhang, J. Lang, H. Liu, H. Fan, Y. Sun, Z. Zhang, H. Song, Superlattices Microstruct. 52, 84 (2012)CrossRefGoogle Scholar
  20. 20.
    J. Yang, R. Wang, L. Yang, J. Lang, M. Wei, M. Gao, X. Liu, J. Cao, X. Li, N. Yang, J. Alloys Compd. 509, 3606 (2011)CrossRefGoogle Scholar
  21. 21.
    Y.K. Ryu, P. Ferna′ndez, J. Piqueras, Phys. Status Solidi A 208, 868 (2011)CrossRefGoogle Scholar
  22. 22.
    J. Lang, Q. Han, C. Li, J. Yang, X. Li, L. Yang, Y. Zhang, M. Gao, D. Wang, J. Cao, J. Appl. Phys. 107, 074302 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Lang, X. Li, J. Yang, L. Yang, Y. Zhang, Y. Yan, Q. Han, M. Wei, M. Gao, X. Liu, R. Wang, Appl. Surf. Sci. 257, 9574 (2011)CrossRefGoogle Scholar
  24. 24.
    N. Kılınç, S. Öztürk, L. Arda, A. Altındal, Z. Ziya Öztürk, J. Alloys Compd. 536, 138 (2012)CrossRefGoogle Scholar
  25. 25.
    D. Katsuki, T. Sato, R. Suzuki, Y. Nanai, S. Kimura, T. Okuno, Appl. Phys. A 108, 321 (2012)CrossRefGoogle Scholar
  26. 26.
    A. Blanca-Romero, M. Berrondo, J.F. Rivas-Silva, Int. J. Quantum Chem. 111, 3831 (2011)Google Scholar
  27. 27.
    J. Yang, X. Li, J. Lang, L. Yang, M. Gao, X. Liu, M. Wei, Y. Liu, R. Wang, J. Alloys Compd. 509, 10025 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Yang, X. Li, J. Lang, L. Yang, M. Wei, M. Gao, X. Liu, H. Zhai, R. Wang, L. Yang, J. Cao, Mater. Sci. Semicond. Process. 14, 247 (2011)CrossRefGoogle Scholar
  29. 29.
    J. Xu, N. Wang, W. Wang, Phys. Status Solidi A 208, 2833 (2011)CrossRefGoogle Scholar
  30. 30.
    Y. Terai, K. Yoshida, M.H. Kamarudin, Y. Fujiwara, Phys. Status Solidi C 8, 519 (2011)CrossRefGoogle Scholar
  31. 31.
    P.M. Aneesh, M.K. Jayaraj, Bull. Mater. Sci. 33, 227 (2010)CrossRefGoogle Scholar
  32. 32.
    Y. Yang, H. Lai, C. Tao, H. Yang, J. Mater. Sci. Mater. Electron. 21, 173 (2010)CrossRefGoogle Scholar
  33. 33.
    S. Bachir, K. Azuma, J. Kossanyi, P. Valet, J.C. Ronfard-Haret, J. Lumin. 75, 35 (1997)CrossRefGoogle Scholar
  34. 34.
    W. Jia, K. Monge, F. Fernandez, Opt. Mater. 23, 27 (2003)CrossRefGoogle Scholar
  35. 35.
    Y.J. Sun, Y. Chen, L.J. Tian, Y. Yu, X.G. Kong, Q.H. Zeng, Y.L. Zhang, H. Zhang, J. Lumin. 128, 15 (2008)CrossRefGoogle Scholar
  36. 36.
    W. Jia, K. Monge, F. Fernandez, Opt. Mater. 23, 27 (2003)CrossRefGoogle Scholar
  37. 37.
    S. Bachir, K. Azuma, J. Kossanyi, P. Valet, J.C. Ronfard-Haret, J. Lumin. 75, 35 (1997)CrossRefGoogle Scholar
  38. 38.
    D. Weissenberger, M. Dürrschnabel, D. Gerthsen, Appl. Phys. Lett. 91, 132110 (2007)CrossRefGoogle Scholar
  39. 39.
    W.I. Park, Y.H. Jun, S.W. Jung, Appl. Phys. Lett. 82, 964 (2003)CrossRefGoogle Scholar
  40. 40.
    P.L. Chen, X.Y. Ma, D.R. Yang, J. Alloys Compd. 431, 317 (2007)CrossRefGoogle Scholar
  41. 41.
    P.H. Kasai, Phys. Rev. 130, 989 (1963)CrossRefGoogle Scholar
  42. 42.
    S. Yamauchi, Y. Goto, T. Hariu, J. Cryst. Growth 260, 1 (2004)CrossRefGoogle Scholar
  43. 43.
    D.D. Wang, J.H. Yang, L.L. Yang, Y.J. Zhang, J.H. Lang, M. Gao, Cryst. Res. Technol. 43, 1041 (2009)CrossRefGoogle Scholar
  44. 44.
    M. Liu, A.H. Kitai, P. Mascher, J. Lumin. 54, 35 (1992)CrossRefGoogle Scholar
  45. 45.
    E.G. Bylander, J. Appl. Phys. 49, 1188 (1978)CrossRefGoogle Scholar
  46. 46.
    X. Yang, G. Du, X. Wang, J. Wang, B. Liu, Y. Zhang, D. Liu, D. Liu, H.C. Ong, S. Yang, J. Cryst. Growth 252, 275 (2003)CrossRefGoogle Scholar
  47. 47.
    J. Zhong, A.H. Kitai, P. Mascher, W. Puff, J. Electrochem. Soc. 140, 3644 (1993)CrossRefGoogle Scholar
  48. 48.
    J. Lang, J. Yang, C. Li, L. Yang, Q. Han, Y. Zhang, D. Wang, M. Gao, X. Liu, Cryst. Res. Technol. 43, 1314 (2008)CrossRefGoogle Scholar
  49. 49.
    L.L. Yang, Q.X. Zhao, M. Willander, J.H. Yang, Ivanov. J. Appl. Phys. 105, 053503 (2009)CrossRefGoogle Scholar
  50. 50.
    Q.X. Zhao, P. Klason, M. Willander, Appl. Phys. Lett. 87, 211912 (2005)CrossRefGoogle Scholar
  51. 51.
    R. Dingle, Phys. Rev. Lett. 23, 579 (1969)CrossRefGoogle Scholar
  52. 52.
    W. Li, Y. Wang, H. Lin, S. Ismat Shah, C.P. Huang, D.J. Doren, S.A. Rykov, J.G. Chen, M.A. Barteau, Appl. Phys. Lett. 83, 4143 (2003)CrossRefGoogle Scholar
  53. 53.
    R.T. Wegh, H. Donker, K.D. Oskam, A. Meijerink, Science 283, 663 (1999)CrossRefGoogle Scholar
  54. 54.
    D.D. Wang, G.Z. Xing, J.H. Yang, L.L. Yang, M. Gao, J. Cao, Y.J. Zhang, B. Yao, J. Alloys Compd. 504, 22 (2010)CrossRefGoogle Scholar
  55. 55.
    X.Y. Zeng, J.L. Yuan, Z.Y. Wang, L. Zhang, Adv. Mater. 19, 4510 (2007)CrossRefGoogle Scholar
  56. 56.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)CrossRefGoogle Scholar
  57. 57.
    Y.S. Liu, W.Q. Luo, R.F. Li, G.K. Liu, M.R. Antonio, X.Y. Chen, J. Phys. Chem. C 112, 686 (2008)CrossRefGoogle Scholar
  58. 58.
    B.R. Judd, Phys. Rev. 127, 750 (1962)CrossRefGoogle Scholar
  59. 59.
    G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jihui Lang
    • 1
    • 2
    • 3
  • Qiang Han
    • 1
    • 2
    • 3
  • Xue Li
    • 4
  • Songsong Xu
    • 1
    • 2
  • Jinghai Yang
    • 1
    • 2
  • Lili Yang
    • 1
    • 2
  • Yongsheng Yan
    • 3
  • Xiuyan Li
    • 1
    • 2
  • Yingrui Sui
    • 1
    • 2
  • Xiaoyan Liu
    • 1
    • 2
  • Jian Cao
    • 1
    • 2
  • Jian Wang
    • 1
    • 2
  1. 1.Institute of Condensed State PhysicsJilin Normal UniversitySipingPeople’s Republic of China
  2. 2.Key Laboratory of Functional Materials Physics and Chemistry, Jilin Normal UniversityMinistry of EducationSipingPeople’s Republic of China
  3. 3.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  4. 4.College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations