Advertisement

Double phase transitions in K2Pb2Sm2W2Ti4Nb4O30 ferroelectrics

  • R. Padhee
  • Piyush R. Das
  • B. N. Parida
  • R. N. P. Choudhary
Article
  • 63 Downloads

Abstract

This paper reports about the double phase transition (at 315 and 366 °C) in the polycrystalline sample of K2Pb2Sm2W2Ti4Nb4O30 prepared by a high-temperature solid-state reaction technique. The calcination temperature was decided based on thermogravimetry analysis. Room temperature X-ray structural analysis confirms the formation of a single phase compound. The surface morphology recorded by scanning electron microscope exhibits a uniform grain distribution with high density. Detailed studies on the nature of variation (1) of dielectric parameters with temperature, and (2) polarization with temperature confirmed the existence of ferroelectricity in the material at room temperature. The temperature dependence of dc conductivity shows a typical Arrhenius behavior. The frequency dependence of ac conductivity suggests that the material obeys Jonscher’s universal power law. The variation of current with temperature shows that the material has high pyroelectric co-efficient and figure of merit, thus making it useful for pyroelectric sensors.

Keywords

Relative Dielectric Constant Ferroelectric Phase Transition Diffuse Phase Transition Pyroelectric Coefficient Orthorhombic Crystal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.K. Singh, R.N.P. Choudhary, Ferroelectrics 325, 7–14 (2005)CrossRefGoogle Scholar
  2. 2.
    M.S. Kim, J.H. Lee, J.J. Kim, H.Y. Lee, S.H. Cho, J. Solid State Electr. 10(1), 18–23 (2006)CrossRefGoogle Scholar
  3. 3.
    L. Fang, H. Zhang, T.H. Huang, R.Z. Yuan, H.X. Liu, J. Mater. Sci. 40(2), 533–535 (2005)CrossRefGoogle Scholar
  4. 4.
    B. Behera, P. Nayak, R.N.P. Choudhury, Mater. Lett. 59(27), 3489–3493 (2005)CrossRefGoogle Scholar
  5. 5.
    V. Hornebecq, C. Elissalde, J.M. Reau, J. Ravez, Ferroelectrics 238(1), 57–63 (2000)CrossRefGoogle Scholar
  6. 6.
    P.R. Das, R.N.P. Choudhary, B.K. Samantray, Mater. Chem. Phys. 101(1), 228–233 (2007)CrossRefGoogle Scholar
  7. 7.
    P.R. Das, R.N.P. Choudhary, B.K. Samantray, J. Alloys Compd. 448, 32–37 (2008)CrossRefGoogle Scholar
  8. 8.
    P.R. Das, R.N.P. Choudhary, B.K. Samantray, J. Phys. Chem. Solids 68(4), 516–522 (2007)CrossRefGoogle Scholar
  9. 9.
    P. Ganguly, A.K. Jha, Int. Ferroelectr. 115, 149–156 (2010)CrossRefGoogle Scholar
  10. 10.
    P. Ganguly, S. Devi, A.K. Jha, Ferroelectrics 381, 152–159 (2009)CrossRefGoogle Scholar
  11. 11.
    P. Ganguly, A.K. Jha, J. Am. Ceram. Soc. 94(6), 1725–1730 (2011)CrossRefGoogle Scholar
  12. 12.
    R. Padhee, P.R. Das, B.N. Parida, R.N.P. Choudhary, J. Mater. Sci. Mater Electron 24(2), 799–806 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Padhee, P.R. Das, B.N. Parida, R.N.P. Choudhary, Curr. Appl. Phys. 13(6), 1014–1020 (2013)CrossRefGoogle Scholar
  14. 14.
    B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, J. Alloys Compd. 540, 267–274 (2012)CrossRefGoogle Scholar
  15. 15.
    P.R. Das, B. Behera, R.N.P. Choudhary, B.K. Samantray. Res. Lett. Mater. Sci. 91796 (2007)Google Scholar
  16. 16.
    H.P. Klug L.E. Alexander, X-Ray Diffraction, Wiley Chester (England) 966 (1974)Google Scholar
  17. 17.
    POWD E W, An interactive Powder diffraction data interpretation and indexing Program, Ver 2.1, School of Physical Science, Finders University of South Australia, Bedford Park, S.A. 5042, AustraliaGoogle Scholar
  18. 18.
    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Company, 1978)Google Scholar
  19. 19.
    J.Y. Son, B.G. Kim, J.H. Cho, Thin Solid Films 500, 360–363 (2006)CrossRefGoogle Scholar
  20. 20.
    F. Liang, Z. Hui, W. Bolin, Y. Runzhang, Prog. Cryst. Growth Charact. Mater. 40(1–4), 161–165 (2000)CrossRefGoogle Scholar
  21. 21.
    R.R. Neurgaonkar, J.G. Nelson, J.R. Oliver, L.E. Cross, Mater. Res. Bull. 25, 959–970 (1990)CrossRefGoogle Scholar
  22. 22.
    R.R. Neurgaonkar, J.G. Nelson, J.R. Oliver, Mater. Res. Bull. 27, 677–684 (1992)CrossRefGoogle Scholar
  23. 23.
    R. Padhee, P.R. Das, B.N. Parida, R.N.P. Choudhary, J. Electron. Mater. 42(3), 426–437 (2013)CrossRefGoogle Scholar
  24. 24.
    I.V. Kityk, M. Makowska-Janusik, M.D. Fontana, M. Aillerie, A. Fahmi, J. Phys. Chem. B 105, 12242–12248 (2001)CrossRefGoogle Scholar
  25. 25.
    I.V. Kityk, M. Makowska-Janusik, M.D. Fontana, M. Aillerie, A. Fahmi, J. Appl. Phys. 90, 5542 (2001)CrossRefGoogle Scholar
  26. 26.
    J.E. Garcia, V. Gomis, R. Perez, A. Albareda, J.A. Eiras, Appl. Phys. Lett. 91, 042902 (2007)CrossRefGoogle Scholar
  27. 27.
    D. Wu, A. Li, N. Ming, Appl. Phys. Lett. 84, 4505 (2004)CrossRefGoogle Scholar
  28. 28.
    Z. Dai, Y. Akishige, J. Phys. D Appl. Phys. 43, 445403 (2010)CrossRefGoogle Scholar
  29. 29.
    N. Singh, A. Agarwal, S. Sanghi, P. Singh, J. Magn. Magn. Mater. 323(5), 486–492 (2011)CrossRefGoogle Scholar
  30. 30.
    O. Raymond, R. Font, N. Suarez-Almodovar, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 97, 084107 (2005)CrossRefGoogle Scholar
  31. 31.
    S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, J. Am. Ceram. Soc. 73, 3122–3125 (1990)CrossRefGoogle Scholar
  32. 32.
    L.E. Cross, Ferroelectrics 76, 241 (1987)CrossRefGoogle Scholar
  33. 33.
    J.R. Macdonald, Solid state Ion. 13(2), 147–149 (1984)CrossRefGoogle Scholar
  34. 34.
    A.K. Jonscher, Nature 267, 673–679 (1977)CrossRefGoogle Scholar
  35. 35.
    K. Funke, Solid State Chem. 22(2), 111–195 (1993)CrossRefGoogle Scholar
  36. 36.
    Z. Lu, J.P. Bonnet, J. Ravez, P. Hagenmuller, Solid State Ion. 57(3–4), 235–244 (1992)CrossRefGoogle Scholar
  37. 37.
    D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Sci. Mater Electron 23(3), 779–785 (2012)CrossRefGoogle Scholar
  38. 38.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  39. 39.
    G.G. Roberts, B. Holcroft, Thin Solid Films 180, 211–216 (1989)CrossRefGoogle Scholar
  40. 40.
    R. Colbrook, G.G. Roberts, Ferroelectrics 118, 199–207 (1991)CrossRefGoogle Scholar
  41. 41.
    R. Çapan, BAÜ FBE Dergisi Cilt:12, Sayı:1, Temmuz (2010) 75–90Google Scholar
  42. 42.
    P. Ganguly, S. Devi, A.K. Jha, Ferroelectrics 381, 111–119 (2009)CrossRefGoogle Scholar
  43. 43.
    M. Petty, J. Tsibouklis, F. Davis, P. Hodge, M.C. Petty, W.J. Feast, J. Phy. D. App. Phy. 25(6), 1032 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • R. Padhee
    • 1
  • Piyush R. Das
    • 1
  • B. N. Parida
    • 1
  • R. N. P. Choudhary
    • 1
  1. 1.Department of Physics, Institute of Technical Education and ResearchSiksha ‘O’ Anusandahan UniversityBhubaneswarIndia

Personalised recommendations