Skip to main content
Log in

(K0.5Na0.5)NbO3–Bi(Mg0.5Ti0.5)O3 solid solution: phase evolution, microstructure and electrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free piezoelectric ceramics with the composition of (1 − x)(K0.5Na0.5)NbO3xBi(Mg0.5Ti0.5)O3 [(1 − x)KNN–xBMT, 0 ≤ x ≤ 0.04] were synthesized via solid-state reaction method. X-ray diffraction patterns revealed that the orthorhombic—tetragonal phase transition was present for (1 − x)KNN–xBMT with increasing the content of BMT. The study of dielectric properties illustrated that both peaks of orthorhombic—tetragonal (T OT ) and tetragonal—cubic (T TC ) phase transitions shifted to lower temperature. Through adding BMT, the electrical properties of KNN ceramics were obviously improved. The optimized piezoelectric and ferroelectric properties with d 33  = 127 pC/N, k p  = 36.58 %, P r  = 22.1 μC/cm2 were obtained as x = 0.01.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  CAS  Google Scholar 

  2. B. Malic, J. Bernard, J. Holc, D. Jenko, M. Kosec, J Eur Ceram Soc 25, 2707 (2005)

    Article  CAS  Google Scholar 

  3. J.G. Wu, Y.Y. Wang, D.Q. Xiao, J.G. Zhu, Z.H. Pu, Appl Phys Lett 91, 132914 (2007)

    Article  Google Scholar 

  4. Y.L. Wang, X.L. Chen, H.F. Zhou, L. Fang, L.J. Liu, H. Zhang, J Mater Sci Mater Electron 24, 770 (2013)

    Article  CAS  Google Scholar 

  5. R.E. Jaeger, L. Egerton, J Am Ceram Soc 45, 209 (1962)

    Article  CAS  Google Scholar 

  6. J.F. Li, K. Wang, B.P. Zhang, L.M. Zhang, J Am Ceram Soc 89, 706 (2006)

    Article  CAS  Google Scholar 

  7. R.P. Wang, R.J. Xie, T. Sekiya, Y. Shimojo, Mater Res Bull 39, 1709 (2004)

    Article  CAS  Google Scholar 

  8. B.P. Zhang, L.M. Zhang, J.F. Li, H.L. Zhang, S.Z. Jin, Mater Sci Forum 475–479, 1165 (2005)

    Article  Google Scholar 

  9. B.P. Zhang, J.F. Li, K. Wang, J Am Ceram Soc 89, 1605 (2006)

    Article  CAS  Google Scholar 

  10. D.M. Lin, K.W. Kwok, H.L.W. Chan, Appl Phys Lett 90, 232903 (2007)

    Article  Google Scholar 

  11. H.Y. Park, J.Y. Choi, M.K. Choi, K.H. Cho, S. Nahmw, J Am Ceram Soc 91, 2374 (2008)

    Article  CAS  Google Scholar 

  12. S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Jpn J Appl Phys 43, L1072 (2004)

    Article  CAS  Google Scholar 

  13. R.C. Chang, S.Y. Chu, Y.F. Lin, C.S. Hong, P.C. Kao, C.H. Lu, Sens Actuators A 138, 355 (2007)

    Article  CAS  Google Scholar 

  14. Y. Guo, K. Kakimoto, H. Ohsato, Jpn J Appl Phys 43, 6662 (2004)

    Article  CAS  Google Scholar 

  15. Y.F. Chang, Z.P. Yang, L.L. Wei, B. Liu, Mater Sci Eng A 437, 301 (2006)

    Article  Google Scholar 

  16. R.C. Chang, S.Y. Chu, Y.P. Wong, Y.F. Lin, C.S. Hong, Sens Actuators A 136, 267 (2007)

    Article  CAS  Google Scholar 

  17. P. Kumar, P. Palei, Ceram Int 36, 1725 (2010)

    Article  CAS  Google Scholar 

  18. Y. Guo, K. Kakimoto, H. Ohsato, Mater Lett 59, 241 (2005)

    Article  CAS  Google Scholar 

  19. M.R. Suchomel, P.K. Davies, Appl Phys Lett 86, 262905 (2005)

    Article  Google Scholar 

  20. Y. Uratani, T. Shishidou, F. Ishii, T. Oguchi, Jpn J Appl Phys 44, 7130 (2005)

    Article  CAS  Google Scholar 

  21. M.D. Snel, W.A. Groen, G.D. With, J Eur Ceram Soc 25, 3229 (2005)

    Article  CAS  Google Scholar 

  22. A. Moure, M. Algueró, L. Pardo, E. Ringgaard, A.F. Pedersen, J Eur Ceram Soc 27, 237 (2007)

    Article  CAS  Google Scholar 

  23. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  CAS  Google Scholar 

  24. A.A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, S. Niitaka, M. Azuma, Y. Shimakawa, M. Takano, F. Izumi, E.T. Muromachi, Chem Mater 18, 798 (2006)

    Article  CAS  Google Scholar 

  25. T. Oikawa, S. Yasui, T. Watanabe, H. Yabuta, Y. Ehara, T. Fukui, H. Funakubo, Jpn J Appl Phys 51, 09LA04 (2012)

    Article  Google Scholar 

  26. B. Xiong, H. Hao, S.J. Zhang, H.X. Liu, M.H. Cao, J Am Ceram Soc 94(10), 3412 (2011)

    Article  CAS  Google Scholar 

  27. R.T. Sun, X.L. Wang, J. Shi, L. Wang, J Appl Phys A 104, 129 (2011)

    Article  CAS  Google Scholar 

  28. B. Lu, X.L. Wang, J. Shi, J Appl Phys 109, 014117 (2011)

    Article  Google Scholar 

  29. S. Sharma, R. Rai, D.A. Hall, J. Shackleton, Adv Mater Lett 3(2), 92 (2012)

    Article  CAS  Google Scholar 

  30. T.Y. Ansell, J. Nikkel, D.P. Cann, A. Sehirlioglu, Jpn J Appl Phys 51, 101802 (2012)

    Article  Google Scholar 

  31. R. Rai, A. Sinha, S. Sharmac, N.K.P. Sinha, J Alloys Compd 486, 273 (2009)

    Article  CAS  Google Scholar 

  32. R.M. Suchomel, P.K. Davies, J Appl Phys 96, 4405 (2004)

    Article  CAS  Google Scholar 

  33. P.Z. Zhang, M.R. Shen, L. Fang, F.G. Zheng, X.L. Wu, J.C. Shen, H.T. Chen, Appl Phys Lett 92, 222908 (2008)

    Article  Google Scholar 

  34. B.L. Cheng, C. Wang, S.Y. Wang, H. Lu, Y.L. Zhou, Z.H. Chen, G.Z. Yang, J Eur Ceram Soc 25, 2295 (2005)

    Article  CAS  Google Scholar 

  35. T.Y. Chen, S.Y. Chu, Y.D. Juang, Sens Actuators A 102, 6 (2002)

    Article  CAS  Google Scholar 

  36. V.A. Isupov, Phys Status Solidif A 181, 211 (2000)

    Article  CAS  Google Scholar 

  37. R.J. Bratton, T.Y. Tien, J Am Ceram Soc 50, 90 (1967)

    Article  CAS  Google Scholar 

  38. K.V.R. Prasad, A.R. Raju, K.B.R. Varma, J Mater Sci 29, 2691 (1994)

    Article  CAS  Google Scholar 

  39. M. Matsubara, T. Yamaguchi, K. Kikuta, S.C. Hirano, Jpn J Appl Phys 44(8), 6136 (2005)

    Article  CAS  Google Scholar 

  40. H.L. Du, Z.M. Li, F.S. Tang, S.B. Qu, Z.B. Pei, W.C. Zhou, Mater Sci Eng B 131, 83 (2006)

    Article  CAS  Google Scholar 

  41. X. Zhao, H. Wang, C. Yuan, J. Xu, Y. Cui, J. Ma, J Mater Sci Mater Electron 24, 1480 (2013)

    Article  CAS  Google Scholar 

  42. Y.F. Chang, Z.P. Yang, D.F. Ma, Z.H. Liu, Z.L. Wang, J Appl Phys 104, 024109 (2007)

    Article  Google Scholar 

  43. M.S. Kim, S.J. Jeong, J.S. Song, J Am Ceram Soc 90, 3338 (2007)

    Article  CAS  Google Scholar 

  44. Y.L. Wang, Y.Q. Lu, M.J. Wu, D. Wang, Y.X. Li, Ceram Int 38, 295 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Guangxi (Nos. 2013GXNSFAA019291 and 2012GXNSFDA053024), Project of Guangxi Scientific Experiment Center of Mining, Metallurgy and Environment (No. KH2011YB018), Natural Science Foundation of China (Nos. 51102058, 21261007, and 21061004), Research start-up funds Doctor of Guilin University of Technology (No. 002401003282), Project of Department of Science and Technology of Guangxi (Nos. 1348020-11 and 11107006-42) and Guilin (Nos. 20120112-1 and 20120112-2), and Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, F., Chen, X., Chen, J. et al. (K0.5Na0.5)NbO3–Bi(Mg0.5Ti0.5)O3 solid solution: phase evolution, microstructure and electrical properties. J Mater Sci: Mater Electron 24, 4346–4350 (2013). https://doi.org/10.1007/s10854-013-1409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1409-6

Keywords

Navigation