(K0.5Na0.5)NbO3–Bi(Mg0.5Ti0.5)O3 solid solution: phase evolution, microstructure and electrical properties

  • Fen He
  • Xiuli Chen
  • Jie Chen
  • Yiliang Wang
  • Huanfu Zhou
  • Liang Fang


Lead-free piezoelectric ceramics with the composition of (1 − x)(K0.5Na0.5)NbO3xBi(Mg0.5Ti0.5)O3 [(1 − x)KNN–xBMT, 0 ≤ x ≤ 0.04] were synthesized via solid-state reaction method. X-ray diffraction patterns revealed that the orthorhombic—tetragonal phase transition was present for (1 − x)KNN–xBMT with increasing the content of BMT. The study of dielectric properties illustrated that both peaks of orthorhombic—tetragonal (T OT ) and tetragonal—cubic (T TC ) phase transitions shifted to lower temperature. Through adding BMT, the electrical properties of KNN ceramics were obviously improved. The optimized piezoelectric and ferroelectric properties with d 33  = 127 pC/N, k p  = 36.58 %, P r  = 22.1 μC/cm2 were obtained as x = 0.01.


Spark Plasma Sinter Piezoelectric Property Perovskite Phase Remnant Polarization Conventional Solid State Reaction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Natural Science Foundation of Guangxi (Nos. 2013GXNSFAA019291 and 2012GXNSFDA053024), Project of Guangxi Scientific Experiment Center of Mining, Metallurgy and Environment (No. KH2011YB018), Natural Science Foundation of China (Nos. 51102058, 21261007, and 21061004), Research start-up funds Doctor of Guilin University of Technology (No. 002401003282), Project of Department of Science and Technology of Guangxi (Nos. 1348020-11 and 11107006-42) and Guilin (Nos. 20120112-1 and 20120112-2), and Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning.


  1. 1.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)CrossRefGoogle Scholar
  2. 2.
    B. Malic, J. Bernard, J. Holc, D. Jenko, M. Kosec, J Eur Ceram Soc 25, 2707 (2005)CrossRefGoogle Scholar
  3. 3.
    J.G. Wu, Y.Y. Wang, D.Q. Xiao, J.G. Zhu, Z.H. Pu, Appl Phys Lett 91, 132914 (2007)CrossRefGoogle Scholar
  4. 4.
    Y.L. Wang, X.L. Chen, H.F. Zhou, L. Fang, L.J. Liu, H. Zhang, J Mater Sci Mater Electron 24, 770 (2013)CrossRefGoogle Scholar
  5. 5.
    R.E. Jaeger, L. Egerton, J Am Ceram Soc 45, 209 (1962)CrossRefGoogle Scholar
  6. 6.
    J.F. Li, K. Wang, B.P. Zhang, L.M. Zhang, J Am Ceram Soc 89, 706 (2006)CrossRefGoogle Scholar
  7. 7.
    R.P. Wang, R.J. Xie, T. Sekiya, Y. Shimojo, Mater Res Bull 39, 1709 (2004)CrossRefGoogle Scholar
  8. 8.
    B.P. Zhang, L.M. Zhang, J.F. Li, H.L. Zhang, S.Z. Jin, Mater Sci Forum 475–479, 1165 (2005)CrossRefGoogle Scholar
  9. 9.
    B.P. Zhang, J.F. Li, K. Wang, J Am Ceram Soc 89, 1605 (2006)CrossRefGoogle Scholar
  10. 10.
    D.M. Lin, K.W. Kwok, H.L.W. Chan, Appl Phys Lett 90, 232903 (2007)CrossRefGoogle Scholar
  11. 11.
    H.Y. Park, J.Y. Choi, M.K. Choi, K.H. Cho, S. Nahmw, J Am Ceram Soc 91, 2374 (2008)CrossRefGoogle Scholar
  12. 12.
    S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Jpn J Appl Phys 43, L1072 (2004)CrossRefGoogle Scholar
  13. 13.
    R.C. Chang, S.Y. Chu, Y.F. Lin, C.S. Hong, P.C. Kao, C.H. Lu, Sens Actuators A 138, 355 (2007)CrossRefGoogle Scholar
  14. 14.
    Y. Guo, K. Kakimoto, H. Ohsato, Jpn J Appl Phys 43, 6662 (2004)CrossRefGoogle Scholar
  15. 15.
    Y.F. Chang, Z.P. Yang, L.L. Wei, B. Liu, Mater Sci Eng A 437, 301 (2006)CrossRefGoogle Scholar
  16. 16.
    R.C. Chang, S.Y. Chu, Y.P. Wong, Y.F. Lin, C.S. Hong, Sens Actuators A 136, 267 (2007)CrossRefGoogle Scholar
  17. 17.
    P. Kumar, P. Palei, Ceram Int 36, 1725 (2010)CrossRefGoogle Scholar
  18. 18.
    Y. Guo, K. Kakimoto, H. Ohsato, Mater Lett 59, 241 (2005)CrossRefGoogle Scholar
  19. 19.
    M.R. Suchomel, P.K. Davies, Appl Phys Lett 86, 262905 (2005)CrossRefGoogle Scholar
  20. 20.
    Y. Uratani, T. Shishidou, F. Ishii, T. Oguchi, Jpn J Appl Phys 44, 7130 (2005)CrossRefGoogle Scholar
  21. 21.
    M.D. Snel, W.A. Groen, G.D. With, J Eur Ceram Soc 25, 3229 (2005)CrossRefGoogle Scholar
  22. 22.
    A. Moure, M. Algueró, L. Pardo, E. Ringgaard, A.F. Pedersen, J Eur Ceram Soc 27, 237 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)CrossRefGoogle Scholar
  24. 24.
    A.A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, S. Niitaka, M. Azuma, Y. Shimakawa, M. Takano, F. Izumi, E.T. Muromachi, Chem Mater 18, 798 (2006)CrossRefGoogle Scholar
  25. 25.
    T. Oikawa, S. Yasui, T. Watanabe, H. Yabuta, Y. Ehara, T. Fukui, H. Funakubo, Jpn J Appl Phys 51, 09LA04 (2012)CrossRefGoogle Scholar
  26. 26.
    B. Xiong, H. Hao, S.J. Zhang, H.X. Liu, M.H. Cao, J Am Ceram Soc 94(10), 3412 (2011)CrossRefGoogle Scholar
  27. 27.
    R.T. Sun, X.L. Wang, J. Shi, L. Wang, J Appl Phys A 104, 129 (2011)CrossRefGoogle Scholar
  28. 28.
    B. Lu, X.L. Wang, J. Shi, J Appl Phys 109, 014117 (2011)CrossRefGoogle Scholar
  29. 29.
    S. Sharma, R. Rai, D.A. Hall, J. Shackleton, Adv Mater Lett 3(2), 92 (2012)CrossRefGoogle Scholar
  30. 30.
    T.Y. Ansell, J. Nikkel, D.P. Cann, A. Sehirlioglu, Jpn J Appl Phys 51, 101802 (2012)CrossRefGoogle Scholar
  31. 31.
    R. Rai, A. Sinha, S. Sharmac, N.K.P. Sinha, J Alloys Compd 486, 273 (2009)CrossRefGoogle Scholar
  32. 32.
    R.M. Suchomel, P.K. Davies, J Appl Phys 96, 4405 (2004)CrossRefGoogle Scholar
  33. 33.
    P.Z. Zhang, M.R. Shen, L. Fang, F.G. Zheng, X.L. Wu, J.C. Shen, H.T. Chen, Appl Phys Lett 92, 222908 (2008)CrossRefGoogle Scholar
  34. 34.
    B.L. Cheng, C. Wang, S.Y. Wang, H. Lu, Y.L. Zhou, Z.H. Chen, G.Z. Yang, J Eur Ceram Soc 25, 2295 (2005)CrossRefGoogle Scholar
  35. 35.
    T.Y. Chen, S.Y. Chu, Y.D. Juang, Sens Actuators A 102, 6 (2002)CrossRefGoogle Scholar
  36. 36.
    V.A. Isupov, Phys Status Solidif A 181, 211 (2000)CrossRefGoogle Scholar
  37. 37.
    R.J. Bratton, T.Y. Tien, J Am Ceram Soc 50, 90 (1967)CrossRefGoogle Scholar
  38. 38.
    K.V.R. Prasad, A.R. Raju, K.B.R. Varma, J Mater Sci 29, 2691 (1994)CrossRefGoogle Scholar
  39. 39.
    M. Matsubara, T. Yamaguchi, K. Kikuta, S.C. Hirano, Jpn J Appl Phys 44(8), 6136 (2005)CrossRefGoogle Scholar
  40. 40.
    H.L. Du, Z.M. Li, F.S. Tang, S.B. Qu, Z.B. Pei, W.C. Zhou, Mater Sci Eng B 131, 83 (2006)CrossRefGoogle Scholar
  41. 41.
    X. Zhao, H. Wang, C. Yuan, J. Xu, Y. Cui, J. Ma, J Mater Sci Mater Electron 24, 1480 (2013)CrossRefGoogle Scholar
  42. 42.
    Y.F. Chang, Z.P. Yang, D.F. Ma, Z.H. Liu, Z.L. Wang, J Appl Phys 104, 024109 (2007)CrossRefGoogle Scholar
  43. 43.
    M.S. Kim, S.J. Jeong, J.S. Song, J Am Ceram Soc 90, 3338 (2007)CrossRefGoogle Scholar
  44. 44.
    Y.L. Wang, Y.Q. Lu, M.J. Wu, D. Wang, Y.X. Li, Ceram Int 38, 295 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Fen He
    • 1
  • Xiuli Chen
    • 1
  • Jie Chen
    • 1
  • Yiliang Wang
    • 1
  • Huanfu Zhou
    • 1
  • Liang Fang
    • 1
  1. 1.Guangxi Scientific Experiment Center of Mining, Metallurgy and Environment, Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, College of Materials Science and EngineeringGuilin University of TechnologyGuilinChina

Personalised recommendations