Synthesis and photovoltaic properties of fluorene-based copolymers with pendent donor–acceptor units

  • Qiong Hou
  • Tao Jia
  • Jungen Liu
  • Suilian Luo
  • Guang Shi


Two fluorene-based copolymers comprising identical pendent triphenylamine (donor)–benzothiadiazole (acceptor) unit on the C9 site of fluorene but different conjugated main chain structures were synthesized by Pd-catalyzed Stille reaction. The thermal, photophysical, electrochemical and photovoltaic properties are studied. The polymers have strong absorption in 300–650 nm. The bulk heterojunction solar cells were fabricated with the copolymers as the donors and PC71BM as the acceptor in a 1:3 weight ratio in the device configuration ITO/PEODT/copolymer:PC71BM (1:3)/LiF/Al. The power conversion efficiency of the device based on copolymer PF-BTh-DTS is 1.1 % with open-circuit voltage (V oc) 0.84 V under simulated AM 1.5 G solar irradiation (100 mW/cm2).

Graphical Abstract


High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Power Conversion Efficiency Intramolecular Charge Transfer Triphenylamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the Natural Science Foundation of China (No. 50803021) and Exhibition Base of Production, Study and Research on New Polymer Materials and Postgraduate Students’ Innovation Training of Guangdong Higher Education Institutes (cgzhzd1007) and Combination Project of Guangdong Province and the Ministry Education of China (2011B090400423).


  1. 1.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)CrossRefGoogle Scholar
  2. 2.
    H.Y. Zhen, K. Li, Z.Y. Huang, Z. Tang, R.M. Wu, G.L. Li, X. Liu, F.L. Zhang, Appl. Phys. Lett. 100, 213901 (2012)CrossRefGoogle Scholar
  3. 3.
    S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.M. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Nat. Photonics 3, 297 (2009)CrossRefGoogle Scholar
  4. 4.
    Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photonics 6, 591 (2012)Google Scholar
  5. 5.
    H. Wang, P. Cheng, Y. Liu, J. Chen, X. Zhan, W. Hu, Z. Shuai, Y. Li, D. Zhu, J. Mater. Chem. 22, 3432 (2012)CrossRefGoogle Scholar
  6. 6.
    D. Deng, L. Gu, J. Mater. Sci.: Mater. Electron. 24, 507 (2013)CrossRefGoogle Scholar
  7. 7.
    P. Willot, L.D. Cremer, G. Koeckelberghs, Macromol. Chem. Phys. 213, 1216 (2012)CrossRefGoogle Scholar
  8. 8.
    Y. Xia, Z. He, J. Tong, B. Li, C. Wang, Y. Cao, H. Wu, H.Y. Woo, D. Fan, Macromol. Chem. Phys. 212, 1193 (2011)CrossRefGoogle Scholar
  9. 9.
    J.S. Wu, Y.J. Cheng, M. Dubosc, C.H. Hsieh, C.Y. Chang, C.S. Hsu, Chem. Commun. 46, 3259 (2010)CrossRefGoogle Scholar
  10. 10.
    Q. Hou, W. Hong, Y. Zhang, J. Liu, Y. Chen, G. Shi, J. Mater. Sci.: Mater. Electron. 24, 536 (2013)CrossRefGoogle Scholar
  11. 11.
    C. Duan, W. Cai, F. Huang, J. Zhang, M. Wang, T. Yang, C. Zhong, X. Gong, Y. Cao, Macromolecules 43, 5262 (2010)CrossRefGoogle Scholar
  12. 12.
    A. Gupta, S.E. Watkins, A.D. Scully, T.B. Singh, G.J. Wilson, L.J. Rozanski, R.A. Evans, Synth. Met. 161, 856 (2011)CrossRefGoogle Scholar
  13. 13.
    G.D. Sharma, J.A. Mikroyannidis, S.P. Singh, Org. Electron. 13, 252 (2012)CrossRefGoogle Scholar
  14. 14.
    Z.G. Zhang, H. Fan, J. Min, S. Zhang, J. Zhang, M. Zhang, X. Guo, X. Zhan, Y. Li, Polym. Chem. 2, 1678 (2011)CrossRefGoogle Scholar
  15. 15.
    A.A.B. Alghamdi, D.C. Watters, H. Yi, S. Al-Faifi, M.S. Almeataq, D. Coles, J. Kingsley, D.G. Lidzey, A. Iraqi, J. Mater. Chem. A 1, 5165 (2013)CrossRefGoogle Scholar
  16. 16.
    C. Du, C. Li, W. Li, X. Chen, Z. Bo, C. Veit, Z. Ma, U. Wuerfel, H. Zhu, W. Hu, F. Zhang, Macromolecules 44, 7617 (2011)CrossRefGoogle Scholar
  17. 17.
    J.Y. Lee, S.H. Kim, I.S. Song, D.K. Moon, J. Mater. Chem. 21, 16480 (2011)CrossRefGoogle Scholar
  18. 18.
    J. Li, X. Deng, Z. Zhang, Y. Wang, Y. Liu, K. He, Y. Huang, Q. Tao, L. Quan, W. Zhu, J. Polym. Sci. A Polym. Chem. 50, 4686 (2012)CrossRefGoogle Scholar
  19. 19.
    Z.G. Zhang, K.L. Zhang, G. Liu, C.X. Zhu, K.G. Neoh, E.T. Kang, Macromolecules 42, 3104 (2009)CrossRefGoogle Scholar
  20. 20.
    E. Kaya, D.H. Apaydin, D.E. Yildiz, L. Toppare, A. Cirpan, Sol. Energy Mater. Sol. Cells 99, 321 (2012)CrossRefGoogle Scholar
  21. 21.
    Q. Hou, X. Xu, T. Guo, X. Zeng, S. Luo, L. Yang, Eur. Polym. J. 46, 2365 (2010)CrossRefGoogle Scholar
  22. 22.
    C.H. Chou, C.F. Shu, Macromolecules 35, 9673 (2002)CrossRefGoogle Scholar
  23. 23.
    J. Liu, L. Chen, S.Y. Shao, Z.Y. Xie, Y.X. Cheng, Y.H. Geng, J. Mater. Chem. 18, 319 (2008)CrossRefGoogle Scholar
  24. 24.
    P.M. Beaujuge, W. Pisula, H.N. Tsao, S. Ellinger, K. Mullen, J.R. Reynolds, J. Am. Chem. Soc. 131, 7514 (2009)CrossRefGoogle Scholar
  25. 25.
    D.M. deLeeuw, M.M.J. Simenon, A.R. Brown, R.E.F. Einerhand, Synth. Met. 87, 53 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Qiong Hou
    • 1
  • Tao Jia
    • 1
  • Jungen Liu
    • 1
  • Suilian Luo
    • 1
  • Guang Shi
    • 1
  1. 1.School of Chemistry and EnvironmentSouth China Normal UniversityGuangzhouChina

Personalised recommendations