Advertisement

Microstructure, electrical and dielectric properties, and impulse clamping characteristics of ZnO–V2O5–Mn3O4 semiconducting ceramics modified with Er2O3

  • Choon-W. Nahm
Article

Abstract

This study focuses on the effect of Er2O3 on microstructure, electrical and dielectric properties, and impulse clamping characteristics of the ZnO–V2O5–Mn3O4 varistor ceramics. Analysis of the microstructure indicated that the ZnO–V2O5–Mn3O4–Er2O3 ceramics consisted of major ZnO grain and minor secondary phases such as Zn3(VO4)2, ZnV2O4, ErVO4, and VO2. As the amount of Er2O3 increased, the densities of sintered pellets increased from 5.46 to 5.52 g/cm3, whereas the average grain size decreased from 7.2 to 6.0 μm. The breakdown field increased from 1,016 to 3,185 V/cm with an increase in the amount of Er2O3. The highest nonlinear coefficient was obtained at the varistor modified with 0.1 mol%, reaching α = 30. The clamp voltage ratio (K), which indicates an impulse absorption capability, was improved with an increase in the amount of Er2O3 and the varistor modified with 0.25 mol% exhibited the best K = 2.41.

Keywords

Mn3O4 V2O5 Leakage Current Density Nonlinear Coefficient Er2O3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.M. Levinson, H.R. Philipp, Am. Ceram. Soc. Bull. 65, 639 (1986)Google Scholar
  2. 2.
    T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990)CrossRefGoogle Scholar
  3. 3.
    C.-W. Nahm, Mater. Lett. 47, 182 (2001)CrossRefGoogle Scholar
  4. 4.
    C.-W. Nahm, J. Mater. Sci. Lett. 21, 201 (2002)CrossRefGoogle Scholar
  5. 5.
    J.-K. Tsai, T.-B. Wu, J. Appl. Phys. 76, 4817 (1994)CrossRefGoogle Scholar
  6. 6.
    J.-K. Tsai, T.-B. Wu, Mater. Lett. 26, 199 (1996)CrossRefGoogle Scholar
  7. 7.
    C.T. Kuo, C.S. Chen, I.-N. Lin, J. Am. Ceram. Soc. 81, 2942 (1998)CrossRefGoogle Scholar
  8. 8.
    H.H. Hng, K.Y. Tse, Ceram. Int. 34, 1153 (2008)CrossRefGoogle Scholar
  9. 9.
    H.H. Hng, P.L. Chan, Ceram. Int. 35, 409 (2009)CrossRefGoogle Scholar
  10. 10.
    H–.H. Hng, P.-L. Chan, Mater. Chem. Phys. 75, 61 (2002)CrossRefGoogle Scholar
  11. 11.
    C.-S. Chen, J. Mater. Sci. 38, 1033 (2003)CrossRefGoogle Scholar
  12. 12.
    H.H. Hng, P.L. Chan, Ceram. Int. 30, 1647 (2004)CrossRefGoogle Scholar
  13. 13.
    C.-W. Nahm, J. Mater. Sci. 42, 8370 (2007)CrossRefGoogle Scholar
  14. 14.
    M. Zhao, X.C. Liu, W.M. Wang, F. Gao, C.S. Tian, Ceram. Int. 34, 1425 (2008)CrossRefGoogle Scholar
  15. 15.
    C.-W. Nahm, Ceram. Int. 35, 541 (2009)CrossRefGoogle Scholar
  16. 16.
    C.-W. Nahm, J. Mater. Sci.: Mater. Electron. 19, 1023 (2009)CrossRefGoogle Scholar
  17. 17.
    C.-W. Nahm, Ceram. Int. 35, 3435 (2009)CrossRefGoogle Scholar
  18. 18.
    C.-W. Nahm, J. Mater. Sci.: Mater. Electron. 22, 1010 (2011)CrossRefGoogle Scholar
  19. 19.
    C.-W. Nahm, Ceram. Int. 38, 5281 (2012)CrossRefGoogle Scholar
  20. 20.
    J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Semiconductor Ceramics Laboratory, Department of Electrical EngineeringDongeui UniversityBusanKorea

Personalised recommendations