Thermal stress driven Sn whisker growth: in air and in vacuum

  • Jung-Lae Jo
  • Shijo Nagao
  • Tohru Sugahara
  • Masanobu Tsujimoto
  • Katsuaki Suganuma


Whisker growths from matte tin electroplating have been observed during thermal cycling up to 1,000 cycles either in air or in vacuum. The density, length, and width of thermal stress whiskers depend on the plating thickness of 2 and 5 μm in the present study. Whiskers grown on the 2 μm plating are longer and thinner than those on 5 μm plating. In both cases, whiskers grow thinner and faster in vacuum than in air. These apparent variations come from the grain sizes and the thermal stress distributions in the electroplating, intrinsically different in 2 and 5 μm thick films. The grain structure of whisker root, particularly grain boundary cracks oxidized in air, determines the stress concentration to drive the whisker growth. Cracking caused by oxidation was rarely observed in vacuum hence causes thin and straight whiskers even from thick plating. Our results indicate that the stress concentration at whisker root grain is essential for controlling whisker growth morphology, and has a critical impact on various electronic applications.


Thermal Cycle Whisker Growth Thermal Cycling Test Root Crack Whisker Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by Grant-in-Aid for Scientific Research (S) Grant Number 24226017.


  1. 1.
    K.N. Tu, Phys. Rev. B 49, 2030–2034 (1994)CrossRefGoogle Scholar
  2. 2.
    C.C. Wei, P.C. Liu, C. Chen, J.C.B. Lee, I.P. Wang, J. Appl. Phys. 102(4), 043521 (2007)CrossRefGoogle Scholar
  3. 3.
    A. Baated, K. Hamasaki, S.S. Kim, K.S. Kim, K. Suganuma, J. Electron. Mater. 40(11), 2278–2289 (2011)CrossRefGoogle Scholar
  4. 4.
    N. Jadhav, M.A. Williams, F. Pei, G. Stafford, E. Chason, J. Electron. Mater. 42(2), 312–318 (2013)CrossRefGoogle Scholar
  5. 5.
    J.-L. Jo, S. Nagao, K. Hamasaki, M. Tsujimoto, T. Sugahara, K. Suganuma, J. Electron. Mater. (submitted)Google Scholar
  6. 6.
    E. Chason, N. Jadhav, F. Pei, JOM 63(10), 62–68 (2011)CrossRefGoogle Scholar
  7. 7.
    K.N. Tu, J.C.M. Li, Mater. Sci. Eng., A 409(1), 131–139 (2005)Google Scholar
  8. 8.
    B.-Z. Lee, D.N. Lee, Acta Mater. 46(10), 3701–3714 (1998)CrossRefGoogle Scholar
  9. 9.
    W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.-W. Moon, M.E. Williams, G.R. Stafford, Acta Mater. 53, 5033–5050 (2005)CrossRefGoogle Scholar
  10. 10.
    J.-L. Jo, K.-S. Kim, T. Sugahara, S. Nagao, K. Hamasaki, M. Tsujimoto, K. Suganuma, J. Mater. Sci.: Mater. Electron. (2013). doi: 10.1007/s10854-013-1218-y
  11. 11.
    K. Suganuma, A. Baated, K.-S. Kim, K. Hamasaki, N. Nemoto, T. Nakagawa, T. Yamada, Acta Mater. 59, 7255–7267 (2011)CrossRefGoogle Scholar
  12. 12.
    J.W. Shin, E. Chason, J. Mater. Res. 24(4), 1522–1528 (2009)CrossRefGoogle Scholar
  13. 13.
    Y. Nakadaira, S. Jeong, J. Shim, J. Seo, S. Min, T. Cho, S. Kang, S. Oh, Microelectron. Reliab. 48, 83–104 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jung-Lae Jo
    • 1
  • Shijo Nagao
    • 1
  • Tohru Sugahara
    • 1
  • Masanobu Tsujimoto
    • 2
  • Katsuaki Suganuma
    • 1
  1. 1.The Institute of Scientific and Industrial ResearchOsaka UniversityOsakaJapan
  2. 2.R&D DivisionC. Uyemura & Co., Ltd.OsakaJapan

Personalised recommendations