Advertisement

Study of ultrafine grains formed on the microsized catalyst surface induced growth of aligned SiO2 nanowires

  • Guodong Wei
  • Fengmei Gao
  • Jinju Zheng
  • Guangling Zhao
  • Weiyou Yang
Article

Abstract

In this study, beard-like and sea cucumber-like silica structures have been successfully synthesized on the Si substrate by a novel and simple water assisted method. The investigation of SEM and TEM reveals that the as-grown products possess many similar features like that they all have a very big, nearly spherical microsized body and uncountable, high density and highly oriented silica nanowire antennas. It is proved that ultrafine nanosized metal catalysts could be generated on the surface of one microsized catalyst during their growth process due to the indications of surface local softening and different elastic deformation along different crystal plane taking place on the catalyst surface during growth process. Our results could introduce a new way to control the growth of high-density and well-oriented functional nanowire arrays with desired morphologies.

Keywords

Whisker Growth Nanowire Diameter Catalyst Droplet Silica Nanowires Large Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work was supported by 973 program (Grant No. 2012CB326407), Zhejiang Provincial Science Foundation for Distinguished Young Scholars (Grant No. R4100242) and Zhejiang Provincial Science Foundation (Grant No. Y4110529), National Natural Science Foundation of China (NSFC, Grant Nos. 50872058, 51202115, and 50572083), Ningbo Municipal Natural Science Foundation (Grant Nos. 2011A610093 and 2011A610094), and the support of K.C. Wong Education Foundation.

References

  1. 1.
    J. Goldberger, A.I. Hochbaum, R. Fan, P. Yang, Nano Lett. 6, 973–977 (2006)CrossRefGoogle Scholar
  2. 2.
    S.E. Thompson, S. Parthasarathy, Mater Today 9, 20–25 (2006)CrossRefGoogle Scholar
  3. 3.
    Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, C.M. Lieber, Science 294, 1313–1317 (2001)CrossRefGoogle Scholar
  4. 4.
    A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294, 1317–1320 (2001)CrossRefGoogle Scholar
  5. 5.
    G.Y. Tseng, J.C. Ellenbogen, Science 294, 1293–1294 (2001)CrossRefGoogle Scholar
  6. 6.
    M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Nature 415, 617–620 (2002)CrossRefGoogle Scholar
  7. 7.
    W. Lu, C.M. Lieber, Nature Mater. 6, 841–850 (2007)CrossRefGoogle Scholar
  8. 8.
    N. Ghoniem, D. Walgraef, S. Zinkle, J. Comput. Aid. Mater. 8, 1–38 (2001)CrossRefGoogle Scholar
  9. 9.
    F. Xu, Y. Lu, Y. Xie, Y. Liu, Mater. Des. 30, 1704–1711 (2009)CrossRefGoogle Scholar
  10. 10.
    C. Sun, C.H.O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.S. Peh, V. Stojanovic, 2012 Sixth IEEE/ACM International Symposium on Networks on chip (NoCS) (2012), pp. 201–210, May 2012Google Scholar
  11. 11.
    R. Horn, P. Abolghasem, B.J. Bijlani, D. Kang, A. Helmy, G. Weihs, Phys. Rev. Lett. 108, 153605–153609 (2012)CrossRefGoogle Scholar
  12. 12.
    B.P. Timko, T. Cohen-Karni, Q. Qing, B. Tian, M. Lieber, IEEE Trans. Nanotechnol. 9, 269–280 (2010)CrossRefGoogle Scholar
  13. 13.
    R. Wagner, W. Ellis, Appl. Phys. Lett. 4, 89–90 (1964)CrossRefGoogle Scholar
  14. 14.
    L. Zhou, H. Huang, Appl. Phys. Lett. 84, 1940–1942 (2004)CrossRefGoogle Scholar
  15. 15.
    E. López-Camacho, M. Fernández, C. Gómez-Aleixandre, Nanotechnology 19, 305602–305606 (2008)CrossRefGoogle Scholar
  16. 16.
    V. Purushothaman, V. Ramakrishnan, K. Jeganathan, RSC Adv. 2, 4802–4806 (2012)CrossRefGoogle Scholar
  17. 17.
    N.S. Ramgir, K. Subannajui, Y. Yang, R. Grimm, R. Michiels, M. Zacharias, J. Phys. Chem. C 114, 10323–10329 (2010)CrossRefGoogle Scholar
  18. 18.
    Y. Wu, P. Yang, J. Am. Chem. Soc. 123, 3165–3166 (2001)CrossRefGoogle Scholar
  19. 19.
    J. Liu, S. Fan, H. Dai, MRS Bull. 29, 244–250 (2004)CrossRefGoogle Scholar
  20. 20.
    Y. Li, R. Cui, L. Ding, Y. Liu, W. Zhou, Y. Zhang, Z. Jin, F. Peng, J. Liu, Adv. Mater. 22, 1508–1515 (2010)CrossRefGoogle Scholar
  21. 21.
    X.S. Fang, C.H. Ye, L.D. Zhang, J.X. Zhang, J.W. Zhao, P. Yan, Small 1, 422–428 (2005)CrossRefGoogle Scholar
  22. 22.
    J. Hu, Y. Jiang, X. Meng, C.S. Lee, S.T. Le, Small 1, 429–438 (2005)CrossRefGoogle Scholar
  23. 23.
    P. Wu, X. Zou, L. Chi, Q. Li, T. Xiao, Growth model of lantern-like amorphous silicon oxide nanowires. Nanotechnology 18, 125601–125606 (2007)CrossRefGoogle Scholar
  24. 24.
    Z.W. Pan, Z.R. Dai, C. Ma, Z.L. Wang, J. Am. Chem. Soc. 124, 1817–1822 (2002)CrossRefGoogle Scholar
  25. 25.
    Z.W. Pan, S. Dai, D.B. Beach, D.H. Lowndes, Appl. Phys. Lett. 83, 3159–3161 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of MaterialsNingbo University of TechnologyNingbo CityPeople’s Republic of China
  2. 2.Department of PhysicsSouthern University and A&M CollegeBaton Rouge CityUSA

Personalised recommendations