Nanocrystalline ITO-Sn2S3 transparent thin films for photoconductive sensor applications

  • L. Motevalizadeh
  • M. Khorshidifar
  • M. Ebrahimizadeh Abrishami
  • M. M. Bagheri Mohagheghi


Nanocrystalline indium tin oxide (ITO) film containing 5 wt% Sn was prepared on glass substrate by the spray pyrolysis technique at a substrate temperature of 500 °C. In order to enhance the photosensitivity of ITO, thiourea (CS(NH2)2 was added to the precursor to obtain the [S]/[In] proportion of 0.1, 0.2, 0.4 and 0.6. The X-ray diffraction patterns showed that beside the bixbyite structure of ITO, the characteristic peaks corresponding to Sn2S3 appeared in XRD profiles recorded for the films with [S]/[In] = 0.1 and 0.2. In addition, sulfur additive caused a considerable decline in crystallinity quality. The optical properties of the films were studied using transmittance measurements in the wavelength range 300–1,000 nm. As a result, ITO and ITO-Sn2S3 thin films were prepared with resistivity of 3.06–3.7 × 10−4 Ω cm and a transmittance of 88–91 % at the wavelength of 550 nm. Moreover, the electrical resistances of ITO and ITO-Sn2S3 films as a function of time were measured in darkness and under illumination of light in the visible range. The photoresistance results revealed that the ITO-Sn2S3 film with [S]/[In] = 0.2 was efficiently sensitive to visible light for photoconductive sensor applications, besides being high conductive and transparent.


Carrier Concentration Spray Pyrolysis SnS2 Spray Pyrolysis Technique Sulfur Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123 (1986)CrossRefGoogle Scholar
  2. 2.
    T. Nagatoma, Y. Martua, O. Omao, Thin Solid Films 192, 17 (1990)CrossRefGoogle Scholar
  3. 3.
    K.M. Reddy, J. Hays, S. Kundu, L.K. Dua, P.K. Biswas, C. Wang, V. Shutthanandan, M.H. Engelhard, X. Mathew, A. Punnoose, J. Mater. Sci.: Mater. Electron. 18, 1197 (2007)CrossRefGoogle Scholar
  4. 4.
    S.Y. Kim, H.W. Jang, J.-L. Lee, Appl. Phys. Lett. 82, 61 (2003)CrossRefGoogle Scholar
  5. 5.
    K. Nihsio, T. Sei, T. Tsuchiya, J. Mater. Sci. 31, 1761 (1996)CrossRefGoogle Scholar
  6. 6.
    D.M. Mattox, Thin Solid Films 204, 25 (1991)CrossRefGoogle Scholar
  7. 7.
    J.I. Pankove, Display devices, topics in applied physics, vol. 40 (Springer-Verlag, Berlin, 1980)CrossRefGoogle Scholar
  8. 8.
    S. Ishibashi, Y. Higuchi, Y. Ota, K. Nakamuva, J. Vac. Sci. Technol. 18, 1399 (1990)Google Scholar
  9. 9.
    S.K. So, W.K. Choi, C.H. Cheng, L.M. Leung, C.F. Kwong, Appl. Phys. A 68, 447 (1999)CrossRefGoogle Scholar
  10. 10.
    L. Li, J.S. Yu, S.L. Lou, W.Z. Li, Y.D. Jiang, W. Li, J. Mater. Sci.: Mater. Electron. 19, 1214 (2008)CrossRefGoogle Scholar
  11. 11.
    A. Arazna, G. Koziol, K. Janeczek, K. Futera, W. Steplewski, J. Mater. Sci.: Mater. Electron. 24, 267 (2013)CrossRefGoogle Scholar
  12. 12.
    R.A. Berrigan, S.J.C. Irvine, A. Stafford, D.J. Cole-Hamilton, D. Ellis, J. Mater. Sci.: Mater. Electron. 9, 267 (1998)CrossRefGoogle Scholar
  13. 13.
    M. Balestrieri, D. Pysch, J.-P. Becker, M. Hermle, W. Warta, S.W. Glunz, Sol. Energy Mater. Sol. Cells 95, 2390 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Subrahmanyam, N. Balasubrahmanian, Semicond. Sci. Technol. 7, 324 (1992)CrossRefGoogle Scholar
  15. 15.
    G.D. Sharma, D. Saxena, M.S. Roy, J. Mater. Sci.: Mater. Electron. 10, 539 (1999)CrossRefGoogle Scholar
  16. 16.
    B.-S. Chiou, J.-H. Tsai, J. Mater. Sci.: Mater. Electron. 10, 491 (1999)CrossRefGoogle Scholar
  17. 17.
    S.T. Heinilehto, J.H. Lappalainen, H.M. Jantunen, V. Lantto, J. Electroceram. 27, 7 (2011)CrossRefGoogle Scholar
  18. 18.
    J.-H. Lee, J. Electroceram. 17, 1103 (2006)CrossRefGoogle Scholar
  19. 19.
    T. Saraidarov, R. Reisfeld, A. Sashchiuk, E. Lifshitz, J. Sol-Gel Sci. Technol. 34, 137 (2005)CrossRefGoogle Scholar
  20. 20.
    A. Tanusevski, D. Poelman, Sol. Energy Mater. Sol. Cells 80, 297 (2003)CrossRefGoogle Scholar
  21. 21.
    U. Alpen, J. Fenner, E. Gmelin, Mater. Res. Bull. 10, 175 (1975)CrossRefGoogle Scholar
  22. 22.
    M. Khadraoui, N. Benramdane, C. Mathieu, A. Bouzidi, R. Miloua, Z. Kebbab, K. Sahraoui, R. Desfeux, Solid State Commun. 150, 297 (2010)CrossRefGoogle Scholar
  23. 23.
    Y.-N. Kim, S.-M. Jeong, M.-S. Jeon, H.-G. Shin, J.-K. Song, H.-S. Lee, J. Electroceram. 17, 955 (2006)CrossRefGoogle Scholar
  24. 24.
    J.-H. Kim, J.-H. Lee, Y.-W. Heo, J–.J. Kim, J.-O. Park, J. Electroceram. 23, 169 (2009)CrossRefGoogle Scholar
  25. 25.
    M. Gulen, G. Yildirim, S. Bal, A. Varilci, I. Belendi, M. Oz, J. Mater. Sci.: Mater. Electron. 24, 467 (2013)CrossRefGoogle Scholar
  26. 26.
    F.O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, M. Motoyama, J. Mater. Sci.: Mater. Electron. 12, 57 (2001)CrossRefGoogle Scholar
  27. 27.
    A. Prodi-Schwab, T. Luthge, R. Jahn, B. Herbig, P. Lobmann, J. Sol-Gel Sci. Technol. 47, 68 (2008)CrossRefGoogle Scholar
  28. 28.
    S.-M. Kim, Y.-S. Rim, M.-J. Keum, K.-H. Kim, J. Electroceram. 23, 341 (2009)CrossRefGoogle Scholar
  29. 29.
    P. Thilakan, S. Kalainathan, J. Kumar, P. Ramssamy, J. Electron. Mater. 24, 719 (1995)CrossRefGoogle Scholar
  30. 30.
    E. Celik, U. Aybarc, M.F. Ebeoglugil, I. Birlik, O. Culha, J. Sol-Gel Sci. Technol. 50, 337 (2009)CrossRefGoogle Scholar
  31. 31.
    N. Asakuma, T. Fukui, M. Toki, H. Imai, J. Sol-Gel Sci. Technol. 27, 91 (2003)CrossRefGoogle Scholar
  32. 32.
    M. Rami, E. Benamar, C. Messaoudi, D. Sayah, A. Ennaoui, Eur. J. Solid State Inorg. Chem. 35, 211 (1998)CrossRefGoogle Scholar
  33. 33.
    M. Ait Aouaj, R. Diaz, A. Belayachi, F. Rueda, M. Abd-Lefdil, Mater. Res. Bull. 44, 1458 (2009)CrossRefGoogle Scholar
  34. 34.
    O. Tuna, Y. Selamet, G. Aygun, L. Ozyuzer, J. Phys. D Appl. Phys. 43, 055402 (2010)CrossRefGoogle Scholar
  35. 35.
    K–.K. Kim, H. Kim, S.-N. Lee, S. Cho, Electron. Mater. Lett. 7, 145 (2011)CrossRefGoogle Scholar
  36. 36.
    I. Chambouleyron, S.D. Ventura, E.G. Birgin, J.M. Martinez, J. Appl. Phys. 92, 3093 (2002)CrossRefGoogle Scholar
  37. 37.
    T.S. Moss, Optical properties of semiconductor (Butter Worths Scientific Publication Ltd, London, 1959)Google Scholar
  38. 38.
    A. Porch, D.V. Morgan, R. Perks, M. Jones, P.P. Edwards, J. Appl. Phys. 95, 9 (2004)CrossRefGoogle Scholar
  39. 39.
    V.S. Reddy, K. Das, A. Dhar, S.K. Ray, Semiconduc. Sci. Technol. 21, 1747 (2006)CrossRefGoogle Scholar
  40. 40.
    H.C. Lee, O.O. Park, Vacuum 80, 880 (2006)CrossRefGoogle Scholar
  41. 41.
    M.-J. Keum, J.-G. Han, J. Korean Phys. Soc. 53, 1580 (2008)CrossRefGoogle Scholar
  42. 42.
    E. Hichou, A. Kachouane, J.L. Bubendorff, M. Addou, J. Ebothe, M. Troyon, A. Bougrine, Thin Solid Films 458, 263 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • L. Motevalizadeh
    • 1
  • M. Khorshidifar
    • 1
  • M. Ebrahimizadeh Abrishami
    • 2
  • M. M. Bagheri Mohagheghi
    • 3
  1. 1.Department of Physics, Mashhad BranchIslamic Azad UniversityMashhadIran
  2. 2. Materials and Electroceramics Laboratory, Department of PhysicsFerdowsi University of MashhadMashhadIran
  3. 3.Department of PhysicsDamghan University DamghanIran

Personalised recommendations