Advertisement

Synthesis of zirconium silicide in Zr thin film on Si and study of its surface morphology

  • Veenu Sisodia
  • S. D. Dhole
Article

Abstract

Zirconium silicide was synthesized on Si (100)/zirconium interface by means of swiftly moving 150 MeV Au ion beam. Thin films of zirconium (~60 nm) were deposited on Si (100) substrates in ultra high vacuum conditions using the electron-beam evaporation technique. The system was exposed to different ion fluencies ranging from 3 × 1013 to 1 × 1014 ions/cm2 at room temperature. Synthesized zirconium silicide thin film reasonably affects the resistivity of the irradiated system and for highest fluence of 1 × 1014 ions/cm2 resistivity value reduces from 84.3 to 36 μΩ cm. A low resistivity silicide phase, C-49 ZrSi2 was confirmed by X-ray analysis. Schottky barrier height was calculated from I–V measurements and the values drops down to 0.58 eV after irradiation at 1 × 1014 ions/cm2. The surface and interface morphologies of zirconium silicide were examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM shows a considerable change in the surface structure and SEM shows the ZrSi2 agglomeration and formation of Si-rich silicide islands.

Keywords

Schottky Barrier Height Silicide Phase Thin Film System Centered Lattice Structure Multimode Scan Probe Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Xia, C.A. Hewett, M. Fernandes, S.S. Lau, D.B. Poker, J Appl Phys 65, 2300 (1989)CrossRefGoogle Scholar
  2. 2.
    A.H. Hamdi, M.-A. Nicolet, Thin Solid Films 119, 357 (1984)CrossRefGoogle Scholar
  3. 3.
    L. Niewo¨hner, D. Depta, Nucl Instrum Methods Phys Res B 59, 523 (1991)CrossRefGoogle Scholar
  4. 4.
    M. Ye, E.P. Burte, H. Ryssel, Nucl Instrum Methods Phys Res B 59, 528 (1991)Google Scholar
  5. 5.
    C. Dehm, I. Kasko, E.P. Burte, J. Gyulai, H. Ryssel, Appl Surf Sci 73, 268 (1993)CrossRefGoogle Scholar
  6. 6.
    I. Kasko, C. Dehm, L. Frey, H. Ryssel, Nucl Instrum Methods Phys Res B 81, 786 (1993)CrossRefGoogle Scholar
  7. 7.
    A. Baba, H. Aramaki, T. Sadoh, T. Tsurushuma, J Appl Phys 82, 5480 (1997)CrossRefGoogle Scholar
  8. 8.
    S. Kal, I. Kasko, H. Ryssel, J Electron Mater 24, 1349 (1995)CrossRefGoogle Scholar
  9. 9.
    L.S. Hung, Q.Z. Hong, J.W. Mayer, Nucl Instrum Methods Phys Res B 37, 414 (1989)CrossRefGoogle Scholar
  10. 10.
    L.S. Wielunski, C.-D. Lien, B.-X. Liu, M.-A. Nicolet, Metastable Materials Formation by Ion Implantation (North-Holland, New York, 1982), p. 139Google Scholar
  11. 11.
    S.P. Murarka, J Vac Sci Technol 17, 775 (1980)CrossRefGoogle Scholar
  12. 12.
    S.P. Murarka, D.B. Fraser, J Appl Phys 51, 350 (1980)CrossRefGoogle Scholar
  13. 13.
    F.M. d’Heurle, J Mater Res 3, 167 (1998)CrossRefGoogle Scholar
  14. 14.
    H. Jeon, C.A. Sukow, J.W. Honecutt, G.A. Rozgonyi, R.J. Nemanich, J Appl Phys 71, 4269 (1992)CrossRefGoogle Scholar
  15. 15.
    K. Maex, Mater Sci Eng R 11, 53 (1992)Google Scholar
  16. 16.
    C.A. Sukow, R.J. Nemanich, J Mater Res 9, 1214 (1994)CrossRefGoogle Scholar
  17. 17.
    H. Jeon, S. Kim, Japan. J Appl Phys 37, 4747 (1998)Google Scholar
  18. 18.
    S.S. Lau, W.K. Chu, J.W. Mayer, K.N. Tu, Thin Solid Films 23, 205 (1974)CrossRefGoogle Scholar
  19. 19.
    M. Setton, J. Van der Spiegel, J Appl Phys 70, 193 (1991)CrossRefGoogle Scholar
  20. 20.
    J.H. Lin, W.Y. Hsieh, L.J. Chen, J Appl Phys 79, 9123 (1996)CrossRefGoogle Scholar
  21. 21.
    A. Bourret, F.M. d’Heurie, F.K. Le Goues, A. Charai, J Appl Phys 67, 241 (1990)CrossRefGoogle Scholar
  22. 22.
    X. Zhao, D. Ceresoli, D. Vanderbilt, Phys Rev B 71, 85107 (2005)CrossRefGoogle Scholar
  23. 23.
    J.F. Zeigler, J.P. Biersack, U. Littmark, The Stopping Range of Ions in Solids (Pergamon Press, New York, 1985)Google Scholar
  24. 24.
    S. Ilango, G. Raghavan, M. Kamruddin, S. Bera, A.K. Tyagi, Appl Phys Lett 87, 101911 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Microtron Accelerator Lab, Department of PhysicsUniversity of PunePuneIndia

Personalised recommendations