Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 24, Issue 9, pp 3514–3520 | Cite as

Giant dielectric, low dielectric loss, and non-ohmic properties of nanocrystalline CaCu3Ti4O12

  • Ekaphan Swatsitang
  • Anuson Niyompan
  • Thanin Putjuso
Article

Abstract

A simple polymer pyrolysis method has been successfully used to prepare CaCu3Ti4O12 (CCTO) nanoparticles by calcination the obtained precursor powder at a low temperature of 800 (CCTO-1) and 850 °C (CCTO-2) in air for 4 h. The XRD results show that both of the calcined powders (CCTO-1 and CCTO-2) are pure having perovskite structure with the crystallite sizes, as evaluated by the XRD line boardening technique, of 47.5 and 75 nm, respectively. The particle sizes as estimated from the bright field images of TEM were found to be in the range of 10–35 and 7–52 nm for CCTO-1 and CCTO-2, respectively. The further sintering of CCTO-1 and CCTO-2 at 1,050 °C in air for 6 h, CCTO-1A and CCTO-2A, are also pure with perovskite structure as indicated by the XRD results. The measurements of the dielectric constant (\( \varepsilon^{\prime } \)) and the low loss tangent (tanδ) at 1 kHz and 20 °C of CCTO-2A were found to be ~11,472 and ~0.0438, respectively. In addition, the CCTO-2A sample shows a small temperature coefficients (\( \left| {\Updelta \varepsilon^{\prime } } \right| < 15\,\% \)) in a wide temperature range from −50 to 110 °C. The non-Ohmic properties non-linear coefficient (α) of CCTO-1A and CCTO-2A were observed and the non-linear coefficient (α) of them determined in the range of 1–10 mA cm−2 were found to be 12.00 and 7.26, respectively. Moreover, the breakdown field (E b ) of CCTO-1A and CCTO-2A ceramics obtained at J = 1 mA cm−2 were calculated and found to be 811 and 1,342 V cm−1, respectively.

Keywords

Calcination Temperature Grain Boundary CoFe2O4 Nonlinear Coefficient CCTO Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)CrossRefGoogle Scholar
  2. 2.
    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673–676 (2001)CrossRefGoogle Scholar
  3. 3.
    A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217–220 (2000)CrossRefGoogle Scholar
  4. 4.
    S.Y. Chung, I.L.D. Kim, S.J.L. Kang, Nat. Mater. 3, 774 (2004)CrossRefGoogle Scholar
  5. 5.
    T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B. 73, 094124 (2006)CrossRefGoogle Scholar
  6. 6.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153–2155 (2002)CrossRefGoogle Scholar
  7. 7.
    S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, J. Appl. Phys. 103, 037602 (2008)CrossRefGoogle Scholar
  8. 8.
    P. Lunkenheimer, S. Krohns, R. Fichtl, S.G. Ebbinghaus, A. Reller, A. Loidl, Eur. Phys. J. Special Topics 108, 61–89 (2010)Google Scholar
  9. 9.
    M.A. Ramirez, P.R. Bueno, R. Tararam, A.A. Cavalheiro, E. Longo, J.A. Varela, J. Phys. D Appl. Phys. 2, 185503 (2009)CrossRefGoogle Scholar
  10. 10.
    J.J. Mohamed, S.D. Hutagalung, M.F. Ain, D. Karim, Z.A. Ahmad, Mater. Lett. 61, 1835 (2007)CrossRefGoogle Scholar
  11. 11.
    S.F. Shao, J.L. Zhang, P. Zheng, C.L. Wang, Solid State Commun. 142, 281 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Kwon, C.C. Huang, M.A. Subramanian, D.P. Cann, J. Alloys Compd. 473, 433 (2009)CrossRefGoogle Scholar
  13. 13.
    C.-M. Wang, K.-S. Kao, S.-Y. Lin, Y.-C. Chen, S.-C. Weng, J. Phys. Chem. Solids 69, 608 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Liu, Y. Sui, C. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, Chem. Mater. 18, 3878 (2006)CrossRefGoogle Scholar
  15. 15.
    J. Liu, R.W. Smith, W.N. Mei, Chem. Mater. 19, 6020 (2007)CrossRefGoogle Scholar
  16. 16.
    L. Liu, H. Fan, P. Fang, L. Jin, Solid State Commun. 142, 573 (2007)CrossRefGoogle Scholar
  17. 17.
    Z. Surowiak, M.F. Kupriyanov, D. Czekaj, J. Eur. Ceram. Soc. 21, 1377–1381 (2001)CrossRefGoogle Scholar
  18. 18.
    S. Jesurani, S. Kanagesan, R. Velmurugan, C. Thirupathi, M. Sivakumar, T. Kalaivani, Mater. Lett. 65, 3305–3308 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Zhao, J. Liu, G. Ma, Ceram. Int. 38, 1221–1225 (2012)CrossRefGoogle Scholar
  20. 20.
    C. Kumar, J. Mater. Sci. Mater. Electron. 22, 579 (2011)CrossRefGoogle Scholar
  21. 21.
    X.M. Liu, S.Y. Fu, H.M. Xiao, C.J. Huang, Physica B: Cond. Matt. 370, 14 (2005)CrossRefGoogle Scholar
  22. 22.
    P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Alloys Compd. 509, 7416–7420 (2011)CrossRefGoogle Scholar
  23. 23.
    X.M. Liu, G. Yang, S.Y. Fu, Mater. Sci. Eng. C 27, 750–755 (2007)CrossRefGoogle Scholar
  24. 24.
    C. Masingboon, P. Thongbai, S. Maensiri, T. Yamwong, S. Seraphin, Mater. Chem. Phys. 109, 262 (2008)CrossRefGoogle Scholar
  25. 25.
    J.A.G. Carrio, S.B. Faldini, L.F. Miranda, P.K. Kiyohara, L.G.A. Silva, A.H. Munhoz Jr, Z. Kristallogr. 26, S537–S542 (2007)CrossRefGoogle Scholar
  26. 26.
    J. Lin, B. Fu, H. Lu, C. Huang, J.W. Sheng, Ceram. Int. 39, S149–S152 (2013)CrossRefGoogle Scholar
  27. 27.
    L. Ni, X.-M. Chen, Appl. Phys. Letts. 91, 122905 (2007)CrossRefGoogle Scholar
  28. 28.
    B. Cheng, Y.-H. Lin, J. Yuan, J. Cai, C.-W. Nan, X. Xiao, J. He, J. Appl. Phys. 106, 034111 (2009)CrossRefGoogle Scholar
  29. 29.
    S.F. Shao, J.L. Zhang, P. Zheng, W.L. Zhong, C.L. Wang, J. Appl. Phys. 99, 084106 (2006)CrossRefGoogle Scholar
  30. 30.
    T. Li, R. Xue, J. Hao, Y. Xue, Z. Chen, J. Alloys Compd. 509, 1025–1028 (2011)CrossRefGoogle Scholar
  31. 31.
    P. Thongbai, T. Yamwong, S. Maensiri, Solid State Commun. 147, 385 (2008)CrossRefGoogle Scholar
  32. 32.
    M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 105, 114109 (2009)CrossRefGoogle Scholar
  33. 33.
    J.L. Zhang, P. Zheng, C.L. Wang, M.L. Zhao, J.C. Li, J.F. Wang, Appl. Phys. Lett. 87, 142901 (2005)CrossRefGoogle Scholar
  34. 34.
    T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89, 3129 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ekaphan Swatsitang
    • 1
  • Anuson Niyompan
    • 2
  • Thanin Putjuso
    • 3
  1. 1.Department of Physics, Faculty of Science, Integrated Nanotechnology Research Center (INRC)Khon Kaen UniversityKhon KaenThailand
  2. 2.Department of Physics, Faculty of ScienceUbon Ratchathani UniversityUbon RatchathaniThailand
  3. 3.Rajamangala University of Technology Rattanakosin Wang Klai Kangwon CampusPrachaubkerekhanThailand

Personalised recommendations