Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 24, Issue 9, pp 3262–3268 | Cite as

Microstructure and electrical properties of (1 − x)K0.5Na0.5NbO3x(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics

  • Wei Feng
  • Yanqiu Huang
  • Haiwei Du
  • Hongping Tang
  • Haina Qin
Article
  • 255 Downloads

Abstract

The (1 − x)K0.5Na0.5NbO3 − x(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (KNN–BCTZ) lead-free ceramics were fabricated by conventional solid-state sintering technique. The microstructure and electrical properties of the ceramics were investigated. The X-ray diffraction analysis revealed that the ceramics formed a single phase perovskite solid solutions with the symmetry of orthorhombic at x < 0.03. The crystal phase of the ceramics changed from orthorhombic phase to pseudocubic phase when x > 0.04. The coexistence of orthorhombic and pseudocubic (tetragonal) phases was observed near room temperature when 0.03 ≤ x ≤ 0.04. The grains grew up obviously when 2 mol% BCTZ was added, but the grain size was found to reduce gradually with further increasing BCTZ content. The T C and T O-T decreased with the increasing BCTZ content. The ferroelectric and piezoelectric properties were abruptly degraded as x ≥ 0.05. Optimum properties (d 33 = 136 pC/N, k p = 27 %, k t = 26.5 %, Q m = 25, P r = 14.67 μC/cm2, E c = 11.23 kV/cm, T C = 347 °C, \(\varepsilon_{33}^{\text{T}} /\varepsilon_{0} = 8 6 1. 5\), tan δ = 0.04) were obtained for the ceramica with x = 0.03.

Keywords

Piezoelectric Property Ferroelectric Property Diffuse Phase Transition Electromechanical Coupling Factor Mechanical Quality Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Open Foundation of Teaching Laboratory of China University of Geosciences, China (No. SKJ2012181). The authors are grateful to Mr. Mengfei Zhang for XRD analysis and Dr. Fei Li for assistance in performing the electrical property measurements.

References

  1. 1.
    J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)CrossRefGoogle Scholar
  2. 2.
    S.O. Leontsev, R.E. Eitel, Sci. Technol. Adv. Mater. 11, 302 (2010)CrossRefGoogle Scholar
  3. 3.
    L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959)CrossRefGoogle Scholar
  4. 4.
    H. Birol, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc. 26, 861 (2006)CrossRefGoogle Scholar
  5. 5.
    Y.J. Dai, X.W. Zhang, K.P. Chen, Appl. Phys. Lett. 94, 042905 (2009)CrossRefGoogle Scholar
  6. 6.
    Y.X. Liu, Y.Q. Huang, H.L. Li, Ceram. Int. 37, 1959 (2011)CrossRefGoogle Scholar
  7. 7.
    J. Fang, X.H. Wang, Z.B. Tian, C.F. Zhong, L.T. Li, J. Am. Ceram. Soc. 93, 3552 (2010)CrossRefGoogle Scholar
  8. 8.
    B. Shao, J.H. Qiu, K.J. Zhu, X.M. Pang, Q.H. Meng, J. Mater. Sci.: Mater. Electron. 23, 846 (2012)CrossRefGoogle Scholar
  9. 9.
    Y.F. Chang, Z.P. Yang, D.F. Ma, Z.H. Liu, Z.L. Wang, J. Appl. Phys. 105, 054101 (2009)CrossRefGoogle Scholar
  10. 10.
    G.Z. Zang, X.J. Yi, J. Du, Z.J. Xu, R.Q. Chu, P. Fu, W. Li, J. Mater. Sci.: Mater. Electron. 22, 1282 (2011)CrossRefGoogle Scholar
  11. 11.
    R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209 (1962)CrossRefGoogle Scholar
  12. 12.
    J.F. Li, K. Wang, J. Am. Ceram. Soc. 89, 706 (2006)CrossRefGoogle Scholar
  13. 13.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)CrossRefGoogle Scholar
  14. 14.
    C.W. Ahn, H.Y. Park, S. Nahma, K. Uchino, H.G. Lee, H.J. Lee, Sensor. Actuat. A. Phys. 136, 255 (2007)CrossRefGoogle Scholar
  15. 15.
    R.C. Chang, S.Y. Chu, Y.F. Lin, C.S. Hong, P.C. Kao, C.H. Lu, Sensor. Actuat. A. Phys. 138, 267 (2007)CrossRefGoogle Scholar
  16. 16.
    Z.Y. Shen, Y.M. Li, L. Jiang, R.R. Li, Z.M. Wang, Y. Hong, R.H. Liao, J. Mater. Sci.: Mater. Electron. 22, 1071 (2011)CrossRefGoogle Scholar
  17. 17.
    E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 18295 (2005)CrossRefGoogle Scholar
  18. 18.
    R.Z. Zuo, X.S. Fang, C. Ye, Appl. Phys. Lett. 90, 092904 (2007)CrossRefGoogle Scholar
  19. 19.
    W.F. Liu, X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009)CrossRefGoogle Scholar
  20. 20.
    J.T. Zeng, L.Y. Zheng, G.R. Li, Z.Z. Cao, K.Y. Zhao, Q.R. Yin, E.D. Politova, J. Alloys Compd. 509, 5858 (2011)CrossRefGoogle Scholar
  21. 21.
    C.P. Poole, Encyclopedic dictionary of condensed matter physics (Elsevier Inc., San Diego, 2004), pp. 1049–1510Google Scholar
  22. 22.
    D.M. Lin, K.W. Kwok, J. Mater. Sci. 47, 397 (2012)CrossRefGoogle Scholar
  23. 23.
    R.Z. Zuo, X.S. Fang, C. Ye, J. Am. Ceram. Soc. 90, 2424 (2007)CrossRefGoogle Scholar
  24. 24.
    R. Wang, R.J. Xie, K. Hannda, K. Matsusaki, J. Electroceram. 21, 263 (2008)CrossRefGoogle Scholar
  25. 25.
    K. Uchino, S. Nomura, L.E. Cross, S.J. Jang, R.E. Newnham, J. Appl. Phys. 51, 1442 (1980)CrossRefGoogle Scholar
  26. 26.
    A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31 (2006)CrossRefGoogle Scholar
  27. 27.
    L. Wu, C.C. Wei, T.S. Wu, H.C. Liu, J. Phys. C: Solid State Phys. 16, 2813 (1983)CrossRefGoogle Scholar
  28. 28.
    Q. Chen, Z.H. Peng, H. Liu, D.Q. Xiao, J.L. Zhu, J.G. Zhu, J. Am. Ceram. Soc. 93, 2788 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wei Feng
    • 1
    • 2
  • Yanqiu Huang
    • 1
    • 2
  • Haiwei Du
    • 1
    • 2
  • Hongping Tang
    • 1
    • 2
  • Haina Qin
    • 1
    • 2
  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of EducationChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China

Personalised recommendations