Journal of Materials Science: Materials in Electronics

, Volume 24, Issue 9, pp 3249–3254 | Cite as

Intermetallic compound layer growth between SnAgCu solder and Cu substrate in electronic packaging

  • Liang Zhang
  • Xi-ying Fan
  • Cheng-wen He
  • Yong-huan Guo


Growth kinetics of intermetallic compound (IMC) layers formed between SnAgCu solder for reflow soldering and Cu substrate by solid state isothermal aging were investigated at temperatures between 100 and 140 °C. For the aged samples, two distinct layers of IMCs of the type Cu6Sn5 and Cu3Sn were identified with the later adjacent to the copper substrate. In the as-soldered samples, only a single layer of interfacial Cu6Sn5 type IMC was formed. Moreover, the apparent activation energies were 96.75 kJ/mol (total IMC), 85.98 kJ/mol (Cu6Sn5 IMC) and 105.92 kJ/mol (Cu3Sn IMC), respectively.


Solder Joint Aging Time Isothermal Aging Growth Rate Constant Solder Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present work was carried out with the supported by the Natural Science Foundation of Jiangsu Province (BK2012144); the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(12KJB460005); the Jiangsu Normal University Foundation (11XLR16) and the Jiangsu University of Science and Technology: Provincial Key Lab of Advanced Welding Technology Foundation (JSAWS-11-03).


  1. 1.
    L. Zhang, C.W. He, Y.H. Guo, J.G. Han, Y.W. Zhang, X.Y. Wang, Development of SnAg-based lead-free solders in electronics packaging[J]. Microelectron. Reliab. 52(3), 559–578 (2012)CrossRefGoogle Scholar
  2. 2.
    H.F. Zou, H.J. Yang, Z.F. Zhang, Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals[J]. Acta Mater. 56(11), 2649–2662 (2008)CrossRefGoogle Scholar
  3. 3.
    D.G. Kim, S.B. Jung, Interfacial reactions and growth kinetics for intermetallic compound layer between In-48Sn solder and bare Cu substrate[J]. J. Alloy. Compd. 386(1–2), 151 (2005)CrossRefGoogle Scholar
  4. 4.
    L. Zhang, S.B. Xue, L.L. Gao, Y. Chen, S.L. Yu, Z. Sheng, G. Zeng, Microstructure and creep properties of Sn–Ag–Cu lead-free solders bearing minor amounts of the rare earth cerium[J]. Solder. Surf. Mount Technol. 22(2), 30 (2010)CrossRefGoogle Scholar
  5. 5.
    J. Li, J. Karooinen, T. Laurila, K. Kivilahti, Reliability of lead-free solder interconnections in thermal and power cycling tests[J]. IEEE Trans. Compon. Packaging 32(2), 302 (2009)CrossRefGoogle Scholar
  6. 6.
    S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.I. Cho, J. Yu, W.K. Choi, Controlling Ag3Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying[J]. J. Miner., Met. Mater. Soc. 56(6), 34–38 (2004)CrossRefGoogle Scholar
  7. 7.
    Z.J. Han, S.B. Xue, J.X. Wang, X. Zhang, L. Zhang, S.L. Yu, H. Wang, Mechanical properties of QFP micro-joints soldered with lead-free solders using diode laser soldering technology[J]. Trans. Nonferrous Met. Soc. China 18(4), 814 (2008)CrossRefGoogle Scholar
  8. 8.
    K.S. Kim, S.H. Huh, K. Suganuma, Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints[J]. J. Alloy. Compd. 352(1–2), 226 (2003)CrossRefGoogle Scholar
  9. 9.
    W.X. Dong, Y.W. Shi, Y.P. Lei, Z.D. Xia, F. Guo, Study of solidification cracks in Sn–Ag–Cu lead-free solder[J]. J. Electron. Mater. 38(9), 1906 (2009)CrossRefGoogle Scholar
  10. 10.
    L. Zhang, S.B. Xue, Y. Chen, Z.J. Han, J.X. Wang, S.L. Yu, F.Y. Lu, Effects of cerium on Sn–Ag–Cu alloys on finite element simulation and experiments[J]. J. Rare Earths 27(1), 138–144 (2009)CrossRefGoogle Scholar
  11. 11.
    X. Ma, F.J. Wang, Y.Y. Qian, F. Yoshida, Development of Cu–Sn intermetallic compound at Pb-free solder/Cu joint interface[J]. Mater. Lett. 57(22–23), 3361–3365 (2003)CrossRefGoogle Scholar
  12. 12.
    N. Mookam, K. Kanlayasiri, Evolution of intermetallic compounds between Sn-0.3Ag-0.7Cu low-silver lead-free and Cu substrate during thermal aging[J]. J. Mater. Sci. Technol. 28(1), 53–59 (2012)CrossRefGoogle Scholar
  13. 13.
    M.J. Rizvi, C. Bailey, Y.C. Chan, M.N. Islam, H. Lu, Effect of adding 0.3 wt% Ni into the Sn-0.7 wt% Cu solder part II. Growth of intermetallic layer with Cu during wetting and aging[J]. J. Alloy. Compd. 438(1–2), 122–128 (2007)CrossRefGoogle Scholar
  14. 14.
    H.R. Kotadia, O. Mokhtari, M.P. Clode, M.A. Green, S.H. Mannan, Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni–P substrates[J]. J. Alloy. Compd. 511(1), 176–188 (2012)CrossRefGoogle Scholar
  15. 15.
    M.J. Rizvi, Y.C. Chan, C. Bailey, H. Lu, M.N. Islm, Effect of adding 1 wt% Bi into the Sn-2.8Ag-0.5Cu solder alloy on the intermetallic formations with Cu-substrate during soldering and isothermal aging[J]. J. Alloy. Compd. 407(1–2), 208–214 (2006)CrossRefGoogle Scholar
  16. 16.
    Y.C. Chan, A.C.K. So, J.K.L. Lai, Growth kinetic studies of Cu-Sn intermetallic compound and its effect on shear strength of LCCC SMT solder joints[J]. Mater. Sci. Eng., B 55(1–2), 5–13 (1998)CrossRefGoogle Scholar
  17. 17.
    C.W. Hwang, K.S. Kim, K. Suganuma, Interfaces in lead-free soldering[J]. J. Electron. Mater. 32(11), 1249–1256 (2003)CrossRefGoogle Scholar
  18. 18.
    H.Q. Wang, F. Gao, X. Ma, Y.Y. Qian, Reactive wetting of solders on Cu and Cu6Sn5/Cu3Sn/Cu substrates using wetting balance[J]. Scripta Mater. 55(9), 823–826 (2006)CrossRefGoogle Scholar
  19. 19.
    L. Zhang, S.B. Xue, L.L. Gao, W. Dai, F. Ji, Y. Chen, S.L. Yu, Microstructure characterization of SnAgCu solder bearing Ce for electronic packaging[J]. Microelectron. Eng. 88(9), 2848–2851 (2011)CrossRefGoogle Scholar
  20. 20.
    W.Q. Peng, E. Monlevade, M.E. Marques, Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu[J]. Microelectron. Reliab. 47(12), 2161–2168 (2007)CrossRefGoogle Scholar
  21. 21.
    L. Zhang, S.B. Xue, G. Zeng, L.L. Gao, H. Ye, Interface reaction between SnAgCu/SnAgCuCe solders and Cu substrate subjected to thermal cycling and isothermal aging[J]. J. Alloy. Compd. 510(1), 38–45 (2012)CrossRefGoogle Scholar
  22. 22.
    F.J. Wang, F. Gao, X. Ma, Y.Y. Qian, Depressing effect of 0.2 wt% Zn addition into Sn-3.0Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging[J]. J. Electron. Mater. 35(10), 1818–1824 (2006)CrossRefGoogle Scholar
  23. 23.
    R. Mayappan, Z.A. Ahmad, Effect of Bi addition on the activation energy for the growth of Cu5Zn8 intermetallic in the Sn–Zn lead-free solder[J]. Intermetallics 18(4), 730–735 (2010)CrossRefGoogle Scholar
  24. 24.
    H.T. Lee, M.H. Chen, Influence of intermetallic compounds on the adhesive strength of solder joints[J]. Mater. Sci. Eng., A 33(1–2), 24–34 (2002)Google Scholar
  25. 25.
    J.W. Yoon, Y.H. Lee, D.G. Kim, H.B. Kang, S.J. Suh, C.W. Yang, C.B. Lee, J.M. Jung, C.S. Yoo, S.B. Jung, Intermetallic compound layer growth at the interface between Sn–Cu–Ni solder and Cu substrate[J]. J. Alloy. Compd. 381(1–2), 151–157 (2004)CrossRefGoogle Scholar
  26. 26.
    J.W. Yoon, B.I. Noh, B.K. Kim, C.C. Shur, S.B. Jung, Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints[J]. J. Alloy. Compd. 486(1–2), 142–147 (2009)CrossRefGoogle Scholar
  27. 27.
    D.Q. Yu, C.M.L. Wu, C.M.T. Law, L. Wang, J.K.L. Lai, Intermetallic compounds growth between Sn-3.5Ag lead-free solder and Cu substrate by dipping method[J]. J. Alloy. Compd. 392(1–2), 192–199 (2005)CrossRefGoogle Scholar
  28. 28.
    T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, J.K. Kivilahti, Morphology, kinetics, and the thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu[J]. J. Mater. Res. 17(2), 291–301 (2002)CrossRefGoogle Scholar
  29. 29.
    J.W. Yoon, B.I. Noh, Y.H. Lee, H.S. Lee, S.B. Jung, Effects of isothermal aging and temperature-humidity treatment of substrate on joint reliability of Sn-3.0Ag-0.5Cu/OSP-finished Cu CSP solder joint[J]. Microelectron. Reliab. 48(11-12), 1864–1874 (2008)CrossRefGoogle Scholar
  30. 30.
    J. Zhao, C.Q. Cheng, L. Qi, C.Y. Chi, Kinetics of intermetallic compound layers and shear strength in Bi-bearing SnAgCu/Cu soldering couples[J]. J. Alloy. Compd. 473(1–2), 382–388 (2009)CrossRefGoogle Scholar
  31. 31.
    A.K. Gain, T. Fouzder, Y.C. Chan, W.K.C. Yung, Microstructure, kinetic analysis and hardness of Sn–Ag–Cu wt% nano-ZrO2 composite solder on OSP-Cu pads[J]. J. Alloy. Compd. 509(7), 3319–3325 (2011)CrossRefGoogle Scholar
  32. 32.
    A. Sharif, Y.C. Chan, Dissolution kinetics of BGA Sn–Pb and Sn–Ag solders with Cu substrates during reflow[J]. Mater. Sci. Eng., B 106(2), 126–131 (2004)CrossRefGoogle Scholar
  33. 33.
    C.M. Chuang, K.L. Lin, Effect of microelements addition on the interfacial reaction between Sn–Ag–Cu solders and the Cu substrate[J]. J. Electron. Mater. 32(12), 1426–1431 (2003)CrossRefGoogle Scholar
  34. 34.
    X.Y. Li, F.H. Li, F. Guo, Y.W. Shi, Effect of isothermal aging and thermal cycling on the interfacial IMC growth and fracture behavior of SnAgCu/Cu joints[J]. J. Electron. Mater. 40(1), 51–61 (2011)CrossRefGoogle Scholar
  35. 35.
    B.L. Chen, G.Y. Li, An investigation of effects of Sb on the intermetallic formation in Sn-3.5Ag-0.7Cu solder joints[J]. IEEE Trans. Compon. Packag. Technol. 28(3), 534–541 (2005)CrossRefGoogle Scholar
  36. 36.
    L.C. Tsao, T.T. Lo, S.F. Peng, Growth kinetics of the intermetallic compounds during the interfacial reactions between Sn3.5Ag0.9Cu-nano TiO2 alloys and Cu substrate[C] 11th international conference on electronic packaging and high density packaging, (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Liang Zhang
    • 1
    • 2
  • Xi-ying Fan
    • 1
  • Cheng-wen He
    • 1
  • Yong-huan Guo
    • 1
  1. 1.School of Mechanical and Electrical EngineeringJiangsu Normal UniversityXuzhouChina
  2. 2.Provincial Key Laboratory of Advanced Welding TechnologyJiangsu University of Science and TechnologyZhenjiangChina

Personalised recommendations