Journal of Materials Science: Materials in Electronics

, Volume 24, Issue 9, pp 3210–3218 | Cite as

Effect of ZnO nanoparticles addition on thermal, microstructure and tensile properties of Sn–3.5 Ag–0.5 Cu (SAC355) solder alloy

  • A. Fawzy
  • S. A. Fayek
  • M. Sobhy
  • E. Nassr
  • M. M. Mousa
  • G. Saad


Regarding to the development of Sn–Ag–Cu (SAC) lead-free solders for advance electronic components, the effect of 0.5 wt% nano-sized ZnO particles on the thermal, microstructure and tensile properties of Sn–3.5 wt% Ag–0.5 wt% Cu (SAC355) lead-free solder alloy is investigated. The results showed that addition of 0.5 wt% nano-sized ZnO particles into the conventional lead-free SAC355 solder caused a slight increase of its liquidus temperature by about 1.1 K. Metallographic observations of SAC355–0.5 wt% ZnO (composite solder) revealed an obvious refinement in the microstructure compared with the SAC355 (non-composite) solder. Consequently, addition of nano sized-ZnO particles could improve the stress–strain characteristics proof stress (σy0.2) and ultimate strength (σUTS). This was rendered to suppressing effect of ZnO on the coarsening of the intemetallic compounds (IMCs) Ag3Sn and Cu6Sn5 during the solidification process in the composite solder and subsequently dispersion strengthening is considered to be the dominating mechanism. This will allow the use of SAC355 composite lead-free solder alloy, to be consistent with the conditions of usage for conventional SAC solder alloys and to overcome the serious problem of the excessive growth of IMCs and the formation of microvoids in the SAC lead-free solder alloys.


Solder Joint Solder Alloy Composite Solder SAC355 Solder Ag3Sn Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. Tai, F. Guo, Z.D. Xia, Y.P. Lei, Y.W. Shi, J. Mater. Sci. Mater. El 21, 702 (2010)CrossRefGoogle Scholar
  2. 2.
    C. Han, Q. Liu, D.G. Ivey, Mat. Sci. Eng. B-Struct 164, 172 (2009)CrossRefGoogle Scholar
  3. 3.
    K. Suganuma, Advances in lead-free electronics soldering. Curr. Opin. Solid State Mater. Sci. 5, 55 (2001)CrossRefGoogle Scholar
  4. 4.
    K.J. Puttlitz, K.A. Stalter, Handbook of lead-free solder technology for microelectronic assemblies (Marcel Dekker Inc., New York, 2004)CrossRefGoogle Scholar
  5. 5.
    E. Çadırlı, H. Kaya, M. Şahin, J. Electron. Mater. 40, 1903 (2011)CrossRefGoogle Scholar
  6. 6.
    F.X. Chea, W.H. Zhu, Edith.S.W. Poh, X.W. Zhang, X.R. Zhang, J. Alloy. Compd. 507, 215 (2010)CrossRefGoogle Scholar
  7. 7.
    Z.B. Luo, J. Zhao, Y.J. Gao, L. Wang, J. Alloy. Compd. 500, 39 (2010)CrossRefGoogle Scholar
  8. 8.
    H. Mavori, S. Jin, J. Electron. Mater. 27, 1216 (1998)CrossRefGoogle Scholar
  9. 9.
    L.C. Tsao, S.Y. Chang, Mater. Design 31, 990 (2010)CrossRefGoogle Scholar
  10. 10.
    L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, C.H. Huang, Mater. Design 31, 4831 (2010)CrossRefGoogle Scholar
  11. 11.
    J. Shen, Y.C. Chan, J. Alloy. Compd. 477, 552 (2009)CrossRefGoogle Scholar
  12. 12.
    G. Saad, S.A. Fayek, A. Fawzy, H.N. Solimana, Gh. Mohammeda, Mat. Sci. Eng. A-Struct. 527, 904 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. Shi, J. Liu, Z. Xia, Y. Lei, F. Guo, X. Li, J. Mater. Sci. Mater. El 19, 349 (2008)CrossRefGoogle Scholar
  14. 14.
    P. Liu, P. Yao, J. Liu, J. Electron. Mater. 37, 874 (2008)CrossRefGoogle Scholar
  15. 15.
    A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 975 (2011)CrossRefGoogle Scholar
  16. 16.
    I.E. Anderson, J.C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra, O. Unal, J. Electron. Mater. 30, 1050 (2001)CrossRefGoogle Scholar
  17. 17.
    G.E. Dieter, Mech. Metall., SI Metric Edition, (McGraw-Hill Company, 1988) p. 297Google Scholar
  18. 18.
    A. Fawzy, Mater. Charact. 58, 323 (2007)CrossRefGoogle Scholar
  19. 19.
    Z.D. Xia, Z.G. Chen, Y.W. Shi, N. Mu, N. Sun, J. Electron. Mater. 31, 564 (2002)CrossRefGoogle Scholar
  20. 20.
    L.C. Tsao, J. Alloy. Compd. 509, 2326 (2011)CrossRefGoogle Scholar
  21. 21.
    D.Q. Yu, L. Wang, C.L. Wu, C.M.T. Law, J. Alloy. Compd. 389, 153 (2005)CrossRefGoogle Scholar
  22. 22.
    X.Y. Liu, M.L. Huang, Y.H. Zhao, C.M.L. Wu, L. Wan, J. Alloy. Compd. 492, 433 (2010)CrossRefGoogle Scholar
  23. 23.
    A.A. El-Daly, A.E. Hammad, Mat. Sci. Eng. A-Struct. 725, 5212 (2010)CrossRefGoogle Scholar
  24. 24.
    A.A. El-Daly, A. Fawzy, A.Z. Mohamad, A.M. El-Taher, J. Alloy. Compd. 509, 4574 (2011)CrossRefGoogle Scholar
  25. 25.
    M.J. Esfandyarpour, R. Mahmudi, Mat. Sci. Eng. A-Struct. 530, 402 (2011)CrossRefGoogle Scholar
  26. 26.
    J. Jiang, J.E. Lee c, K.S. Kimb, K. Suganumab, J. Alloy. Compd. 462, 244 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. Fawzy
    • 1
  • S. A. Fayek
    • 2
  • M. Sobhy
    • 1
  • E. Nassr
    • 1
  • M. M. Mousa
    • 1
  • G. Saad
    • 1
  1. 1.Physics Department, Faculty of EducationAin Shams UniversityCairoEgypt
  2. 2.Physics DepartmentNational Centre for Radiation Research and TechnologyNasr City, CairoEgypt

Personalised recommendations