Skip to main content
Log in

Microstructural and optoelectronic properties of rf magnetron sputtered ZnO:(Ga,Ti) semiconductor thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Applying radio-frequency (rf) magnetron sputtering technique, Ga–Ti co-doped ZnO [ZnO:(Ga,Ti)] transparent conductive oxide films were deposited onto glass substrates. The films were characterized by X-ray diffraction, four-point probe and UV–visible spectrophotometer. The influence of sputtering pressure on microstructure and optoelectronic properties of the films was investigated. The results show that all the films are polycrystalline with a hexagonal wurtzite structure and grow preferentially in the (002) direction. The ZnO:(Ga,Ti) films deposited at sputtering pressure of 0.4 Pa exhibit the maximum grain size of 86.6 nm, the highest transmittance of 85.9 %, the lowest resistivity of 1.67 × 10−3 Ω cm, and the highest figure of merit of 1.38 × 10−2 Ω−1. The optical constants such as refractive index, extinction coefficient, dielectric constant and dissipation factor were determined using the method of whole optical spectrum fitting. Meanwhile, the dispersion behaviour of the films was studied by the single electronic oscillator model. The oscillator parameters and optical energy gaps were achieved. The results demonstrate that the microstructure and optoelectronic properties of the films are closely related to the sputtering pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913–915 (1987)

    Article  CAS  Google Scholar 

  2. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Nature 347, 539–541 (1990)

    Article  CAS  Google Scholar 

  3. S. Chen, S. Wei, X. He, F. Sun, J. South-Cent. Univ. Nationlities (Nat. Sci. Ed.) 28, 43–46 (2009)

    Article  CAS  Google Scholar 

  4. Z.Z. You, Mater. Lett. 61, 3809–3814 (2007)

    Article  CAS  Google Scholar 

  5. H.-H. Huang, S.-Y. Chu, P.-C. Kao, Y.-C. Chen, M.-R. Yang, Z.-L. Tseng, J. Alloy. Compd. 479, 520–524 (2009)

    Article  CAS  Google Scholar 

  6. C.W. Tang, Appl. Phys. Lett. 48, 183–185 (1986)

    Article  CAS  Google Scholar 

  7. X. Li, J. South-Cent. Univ. Nationlities (Nat. Sci. Ed.) 27, 14–17 (2008)

    CAS  Google Scholar 

  8. L. Zuo, X. Jiang, M. Xu, L. Yang, Y. Nan, Q. Yan, H. Chen, Sol. Energy Mater. Sol. Cells 95, 2664–2669 (2011)

    Article  CAS  Google Scholar 

  9. K. Schulze, B. Maennig, K. Leo, Y. Tomita, C. May, J. Hüpkes, E. Brier, E. Reinold, P. Bäuerle, Appl. Phys. Lett. 91, 073521-1-073521-3 (2007)

    Google Scholar 

  10. S. Yun, S. Lim, J. Solid State Chem. 184, 273–279 (2011)

    Article  CAS  Google Scholar 

  11. X. Li, Y. Hu, J. South-Cent. Univ. Nationlities (Nat. Sci. Ed.) 29, 6–9 (2010)

    Google Scholar 

  12. U. Betz, M.K. Olsson, J. Marthy, M.F. Escolá, F. Atamny, Surf. Coat. Technol. 200, 5751–5759 (2006)

    Article  CAS  Google Scholar 

  13. H. Karaagac, E. Yengel, M.S. Islam, J. Alloy. Compd. 521, 155–162 (2012)

    Article  CAS  Google Scholar 

  14. V. Shelke, B.K. Sonawane, M.P. Bhole, D.S. Patil, J. Mater. Sci.: Mater. Electron. 23, 451–456 (2012)

    Article  CAS  Google Scholar 

  15. X.Q. Gu, L.P. Zhu, L. Cao, Z.Z. Ye, H.P. He, P.K. Chu, Mater. Sci. Semicond. Process. 14, 48–51 (2001)

    Article  Google Scholar 

  16. W. Yang, S.M. Rossnagel, J. Joo, Vaccum 86, 1452–1457 (2012)

    Article  CAS  Google Scholar 

  17. M. Jiang, X. Liu, Appl. Surf. Sci. 255, 3175–3178 (2008)

    Article  CAS  Google Scholar 

  18. I.A. Palani, D. Nakamura, K. Okazaki, M. Highasiata, T. Okada, J. Alloy. Compd. 527, 112–116 (2012)

    Article  CAS  Google Scholar 

  19. J. Kang, H.W. Kim, C. Lee, J. Korean Phys. Soc. 56, 576–579 (2010)

    CAS  Google Scholar 

  20. W. Lee, S. Shin, D.-R. Jung, J. Kim, C. Nahm, T. Moon, B. Park, Curr. Appl. Phys. 12, 628–631 (2012)

    Article  Google Scholar 

  21. Z. Zhong, J. Zhou, L. Yang, J. South-Cent. Univ. Nationlities (Nat. Sci. Ed.) 30, 34–37 (2011)

    CAS  Google Scholar 

  22. A. Maldonado, A. Guillèn-Santiago, M. de la L Olvera, R. Castanedo-Pèrez, G. Torres-Delgado, Mater. Lett. 59, 1146–1151 (2005)

    Article  CAS  Google Scholar 

  23. X. He, L. Xiong, J. South-Cent. Univ. Nationlities (Nat. Sci. Ed.) 30, 70–73 (2011)

    Google Scholar 

  24. T. Ghosh, S. Bandopadhyay, K.K. Roy, A.K. Maiti, K. Goswami, Cryst. Res. Technol. 44, 879–882 (2009)

    Article  CAS  Google Scholar 

  25. T.P. Rao, M.C.S. Kumar, S.A. Angayarkanni, M. Ashok, J. Alloy. Compd. 485, 413–417 (2009)

    Article  CAS  Google Scholar 

  26. D. Chen, Q. Li, J. Huang, J. South-Cent. Univ. Nationlities (Nat. Sci. Ed.) 29, 14–17 (2010)

    Google Scholar 

  27. Z.Y. Zhong, T. Zhang, Mater. Lett. 96, 237–239 (2013)

    Article  CAS  Google Scholar 

  28. Q.-B. Ma, Z.-Z. Ye, H.-P. He, L.-P. Zhu, B.-H. Zhao, Mater. Sci. Semicond. Process. 10, 167–172 (2007)

    Article  CAS  Google Scholar 

  29. Z.Z. You, G.J. Hua, Vacuum 83, 984–988 (2009)

    Article  CAS  Google Scholar 

  30. H.K. Yadav, K. Sreenivas, V. Gupta, J. Appl. Phys. 99, 083507-1-083507-8 (2006)

    Google Scholar 

  31. Z. Zhong, J. Gu, X. He, F. Sun, J. South-Cent. Univ. Nationlities (Nat. Sci. Ed.) 28, 33–37 (2009)

    CAS  Google Scholar 

  32. G. Haacke, J. Appl. Phys. 47, 4086–4089 (1976)

    Article  CAS  Google Scholar 

  33. D.-K. Kim, H.-B. Kim, J. Alloy. Compd. 522, 69–73 (2012)

    Article  CAS  Google Scholar 

  34. Z. Zhong, T. Zhang, H. Wang, J. South-Cent. Univ. Nationlities (Nat. Sci. Ed.) 31, 66–71 (2012)

    Google Scholar 

  35. M. Mulato, I. Chambouleyron, E.G. Birgin, J.M. Martínez, Appl. Phys. Lett. 77, 2133–2135 (2000)

    Article  CAS  Google Scholar 

  36. S.S. Fouad, E.A.A. El-Shazly, M.R. Balboul, S.A. Fayek, M.S. El-Bana, J. Mater. Sci.: Mater. Electron. 17, 193–198 (2006)

    Article  CAS  Google Scholar 

  37. D.R. Sahu, J.-L. Huang, Sol. Energy Mater. Sol. Cells 93, 1923–1927 (2009)

    Article  CAS  Google Scholar 

  38. Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, Z. Sun, Thin Solid Films 510, 95–101 (2006)

    Article  CAS  Google Scholar 

  39. Z.Z. You, G.J. Hua, J. Alloy. Compd. 530, 11–17 (2012)

    Article  CAS  Google Scholar 

  40. S. Aksoy, Y. Caglar, S. Ilican, M. Caglar, J. Alloy. Compd. 512, 171–178 (2012)

    Article  CAS  Google Scholar 

  41. K. Tanaka, Thin Solid Films 66, 271–279 (1980)

    Article  CAS  Google Scholar 

  42. M. Zribi, M. Kanzari, B. Rezig, Mater. Lett. 60, 98–103 (2006)

    Article  CAS  Google Scholar 

  43. R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, P.K. Kahol, J. Cryst. Growth 310, 3019–3023 (2008)

    Article  CAS  Google Scholar 

  44. F. Sun, S. Hui, J. South-Cent. Univ. Nationlities (Nat. Sci. Ed.) 28, 10–13 (2009)

    Google Scholar 

  45. M. Ait Aouaj, R. Diaz, A. Belayachi, F. Rueda, M. Abd-Lefdil, Mater. Res. Bull. 44, 1458–1461 (2009)

    Article  Google Scholar 

  46. S.H. Wemple, M. DiDomenico Jr, Phys. Rev. B 3, 1338–1351 (1971)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Graduate Innovation Fund of SCUN (chxxyz120023), the Natural Science Foundation of Hubei (2011CDB418), the Academic Team Project of SCUN (XTZ09003) and the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (SCUN). The authors would like to thank the anonymous reviewers and editor for several helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Zhong, Z. & Wang, H. Microstructural and optoelectronic properties of rf magnetron sputtered ZnO:(Ga,Ti) semiconductor thin films. J Mater Sci: Mater Electron 24, 2995–3000 (2013). https://doi.org/10.1007/s10854-013-1202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1202-6

Keywords

Navigation